【題目】已知是橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,線段與軸的交點(diǎn)滿足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)作不與軸重合的直線,設(shè)與圓相交于兩點(diǎn),與橢圓相交于兩點(diǎn),當(dāng)且時(shí),求的面積的取值范圍.
【答案】(1) .
(2) .
【解析】分析:(1)由知是中點(diǎn),從而得軸,因此得,再把點(diǎn)坐標(biāo)代入橢圓方程再結(jié)合可解得得橢圓方程;
(2)設(shè)直線的方程為,,,代入圓方程可得,計(jì)算,由可解得,設(shè),把代入橢圓方程可得,由計(jì)算出面積,最后根據(jù)的范圍得面積的范圍.
詳解:(1)∵,則為線段的中點(diǎn),∴是的中位線,
又,∴,于是,且,解得,,
∴橢圓的標(biāo)準(zhǔn)方程為.
(2)由(1)知,,由題意,設(shè)直線的方程為,,,
由得,則,.
.
∵,∴,解得.
由消得,設(shè),,
則 .
設(shè),則,其中,
∵關(guān)于在上為減函數(shù),∴,即的面積的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓+=1(a>b>0)上的點(diǎn)P到左,右兩焦點(diǎn)F1,F2的距離之和為2,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)右焦點(diǎn)F2的直線l交橢圓于A,B兩點(diǎn),若y軸上一點(diǎn)M(0,)滿足|MA|=|MB|,求直線l的斜率k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是邊長(zhǎng)為3的正方形,平面,,且,.
(1)試在線段上確定一點(diǎn)的位置,使得平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校共有10000人,其中男生7500人,女生2500人,為調(diào)查該校學(xué)生每則平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集200位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).調(diào)查部分結(jié)果如下列聯(lián)表:
男生 | 女生 | 總計(jì) | |
每周平均體育運(yùn)動(dòng)時(shí)間不超過(guò)4小時(shí) | 35 | ||
每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4小時(shí) | 30 | ||
總計(jì) | 200 |
(1)完成上述每周平均體育運(yùn)動(dòng)時(shí)間與性別的列聯(lián)表,并判斷是否有把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”;
(2)已知在被調(diào)查的男生中,有5名數(shù)學(xué)系的學(xué)生,其中有2名學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4小時(shí),現(xiàn)從這5名學(xué)生中隨機(jī)抽取2人,求恰有1人“每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4小時(shí)”的概率.
附:,其中.
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,平面ABC,,E是BC的中點(diǎn),.
求異面直線AE與所成的角的大;
若G為中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正四面體中,分別是的中點(diǎn),下面四個(gè)結(jié)論:
①//平面
②平面
③平面平面
④平面平面
其中正確結(jié)論的序號(hào)是______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐與三棱錐中,和都是邊長(zhǎng)為2的等邊三角形,分別為的中點(diǎn),,.
(Ⅰ)試在平面內(nèi)作一條直線,當(dāng)時(shí),均有平面(作出直線并證明);
(Ⅱ)求兩棱錐體積之和的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)是定義在上的奇函數(shù),且為偶函數(shù),當(dāng)時(shí),,若函數(shù)恰有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com