(2013•虹口區(qū)一模)已知sinα=3cosα,則
cos2α
1+sin2α
=
-
1
2
-
1
2
分析:由已知先求tanα,把所求的式子中的三角函數(shù)利用二倍角公式進行化簡,然后化為正切形式,代入可求 值
解答:解:∵sinα=3cosα,
∴tanα=3
cos2α
1+sin2α
=
cos2α-sin2α
cos2α+2sinαcosα+sin2α
=
1-tan2α
1+2tanα+tan2α
=
1-9
1+6+9
=-
1
2

故答案為:-
1
2
點評:此題考查了二倍角的正弦、余弦函數(shù)公式,以及同角三角函數(shù)間的基本關系,熟練掌握二倍角的正弦、余弦函數(shù)公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•虹口區(qū)一模)數(shù)列{an}滿足an=
n   ,當n=2k-1
ak , 當n=2k
,其中k∈N*,設f(n)=a1+a2+…+a2n-1+a2n,則f(2013)-f(2012)等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•虹口區(qū)一模)關于z的方程
.
1+i0z
-i
1
2
i
1-i0z
.
=2+i2013
(其中i是虛數(shù)單位),則方程的解z=
1-2i
1-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•虹口區(qū)一模)在下面的程序框圖中,輸出的y是x的函數(shù),記為y=f(x),則f-1(
12
)
=
-1
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•虹口區(qū)一模)在△ABC中,AB=2
3
,AC=2,且∠B=
π
6
,則△ABC的面積為
3
或2
3
3
或2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•虹口區(qū)一模)如果函數(shù)y=f(x)的定義域為R,對于定義域內(nèi)的任意x,存在實數(shù)a使得f(x+a)=f(-x)成立,則稱此函數(shù)具有“P(a)性質(zhì)”.
(1)判斷函數(shù)y=sinx是否具有“P(a)性質(zhì)”,若具有“P(a)性質(zhì)”求出所有a的值;若不具有“P(a)性質(zhì)”,請說明理由.
(2)已知y=f(x)具有“P(0)性質(zhì)”,且當x≤0時f(x)=(x+m)2,求y=f(x)在[0,1]上的最大值.
(3)設函數(shù)y=g(x)具有“P(±1)性質(zhì)”,且當-
1
2
≤x≤
1
2
時,g(x)=|x|.若y=g(x)與y=mx交點個數(shù)為2013個,求m的值.

查看答案和解析>>

同步練習冊答案