【題目】已知a,b,c∈(0,+∞).
(1)若a=6,b=5,c=4是△ABC邊BC,CA,AB的長(zhǎng),證明:cosA∈Q;
(2)若a,b,c分別是△ABC邊BC,CA,AB的長(zhǎng),若a,b,c∈Q時(shí),證明:cosA∈Q;
(3)若存在λ∈(-2,2)滿足c2=a2+b2+λab,證明:a,b,c可以是一個(gè)三角形的三邊長(zhǎng).
【答案】(1)見解析(2)見解析(3)見解析
【解析】
(1)利用余弦定理求出cosA=0.125∈Q得證;(2)利用余弦定理得cosA=∈Q得證;(3)不妨假設(shè)不存在以a,b,c為三邊的三角形,即:a+b≤c,找到矛盾即得證.
證明:(1)∵a=6,b=5,c=4,
∴由余弦定理可得:cosA==0.125∈Q,得證;
(2)∵任意兩個(gè)有理數(shù)的和,差,積,商(除數(shù)不為0)仍是有理數(shù),
∴a,b,c∈Q時(shí),可得:cosA=∈Q;
(3)∵不妨假設(shè)不存在以a,b,c為三邊的三角形,即:a+b≤c,
∴兩邊平方,可得:a2+b2+2ab≤a2+b2+λab,
∴λ≥2,
∵λ∈(-2,2),矛盾,
故假設(shè)不成立,即存在以a,b,c為三邊的三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}(n=1,2,3,4,5)滿足a1=a5=0,且當(dāng)2≤k≤5時(shí),(ak﹣ak﹣1)2=1,令S= , 則S不可能的值是( 。
A.4
B.0
C.1
D.-4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),如果,使得,則稱為區(qū)間[a,b]上的“中值點(diǎn)”,下列函數(shù):
①; ②; ③; ④中,在區(qū)間[O,1]上“中值點(diǎn)”多于一個(gè)的函數(shù)序號(hào)為( )
A. ①② B. ①③ C. ②③ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù),且在區(qū)間(0,+∞)內(nèi)是單調(diào)遞增的函數(shù)是( 。
A.y=
B.y=cosx
C.y=|lnx|
D.y=2|x|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有5名男生、2名女生站成一排照相,
(1)兩女生要在兩端,有多少種不同的站法?
(2)兩名女生不相鄰,有多少種不同的站法?
(3)女生甲不在左端,女生乙不在右端,有多少種不同的站法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】復(fù)利是一種計(jì)算利息的方法.即把前一期的利息和本金加在一起算作本金,再計(jì)算下一期的利息.某同學(xué)有壓歲錢1000元,存入銀行,年利率為2.25%;若放入微信零錢通或
者支付寶的余額寶,年利率可達(dá)4.01%.如果將這1000元選擇合適方式存滿5年,可以多獲利息( )元.(參考數(shù)據(jù):)
A. 176 B. 100 C. 77 D. 88
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為調(diào)查高三年學(xué)生的身高情況,按隨機(jī)抽樣的方法抽取80名學(xué)生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在170~175cm的男生人數(shù)有16人.
(Ⅰ)試問在抽取的學(xué)生中,男、女生各有多少人?
(Ⅱ)根據(jù)頻率分布直方圖,完成下列的2×2列聯(lián)表,并判斷能有多大(百分幾)的把握認(rèn)為“身高與性別有關(guān)”?
≥170cm | <170cm | 總計(jì) | |
男生身高 | |||
女生身高 | |||
總計(jì) |
(Ⅲ)在上述80名學(xué)生中,從身高在170~175cm之間的學(xué)生中按男、女性別分層抽樣的方法,抽出5人,從這5人中選派3人當(dāng)旗手,求3人中恰好有一名女生的概率.
參考公式:K2=
參考數(shù)據(jù):
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)求直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一個(gè)骰子連續(xù)拋擲三次,它落地時(shí)向上的點(diǎn)數(shù)能組成成等差數(shù)列的概率為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com