如圖(1)所示,一只裝了水的密封瓶子,其內(nèi)部可以看成是由半徑為1cm和半徑為3cm的兩個圓柱組成的簡單幾何體.當這個幾何體如圖(2)水平放置時,液面高度為20cm,當這個幾何體如圖(3)水平放置時,液面高度為28cm,則這個簡單幾何體的總高度為(  )
A.29cm  B.30cm
C.32cm  D.48cm
A

解:由(2)可知下部圓柱的體積是:180π,設幾何體上部圓柱的高為h,
由(3)可得:πh+9π(28-h)=180π,解得h=9
幾何體的高是29
故選A.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

用符號表示“點A在直線l上,l在平面外”,正確的是(  )
A.Al, l B.Al, l
C.Al, l D.Al, l

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)如圖,直三棱柱ABC—A1B1C1中,∠BAC=90°,AB=BB1=1,直線B1C與平面ABC成30°角,求二面角B-B1C-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
如圖,在四面體中,,點分別是的中點. 求證:
(1)直線平面;
(2)平面平面

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題12分)已知空間四邊形ABCD中,AC=AD,BC=BD,且E是CD的中點,F(xiàn)是BD的中點, (1)求證:BC∥平面AFE   (2)平面ABE⊥平面ACD

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)
如圖,四棱錐中,⊥底面,底面為梯形,,且,點是棱上的動點.
(Ⅰ)當∥平面時,確定點上的位置;
(Ⅱ)在(Ⅰ)的條件下,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分13分)如圖,線段,所在直線是異面直線,,,分別是線段,,,的中點.
(1) 求證:共面且;
(2) 設分別是上任意一點,求證:被平面平分.


 
 


查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

有如下三個命題:
①分別在兩個平面內(nèi)的兩條直線一定是異面直線;
②垂直于同一個平面的兩條直線是平行直線;
③過平面的一條斜線有一個平面與平面垂直;
其中正確命題的個數(shù)為­­­­­­­­­­(   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,正方體棱長為1,的中點,的中點,的中點
(1)求證:
(2)求證:;

查看答案和解析>>

同步練習冊答案