Processing math: 4%
4.已知三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,各頂點都在同一球面上,若該棱柱的體積為3,AB=2\sqrt{2},AC=\sqrt{2},∠BAC={60°},則此球的體積等于( �。�
A.\frac{{8\sqrt{2}π}}{3}B.\frac{9π}{2}C.\frac{{5\sqrt{10}π}}{3}D.\frac{{4\sqrt{3}π}}{3}

分析 畫出球的內(nèi)接三棱柱ABC-A1B1C1,作出球的半徑,然后可求球的表面積.

解答 解:設(shè)AA1=h,則
∵棱柱的體積為\sqrt{3},AB=2\sqrt{2},AC=\sqrt{2},∠BAC={60°}
\frac{1}{2}×2\sqrt{2}×\sqrt{2}×\frac{\sqrt{3}}{2}h=\sqrt{3}
∴h=1,
∵AB=2\sqrt{2},AC=\sqrt{2},∠BAC={60°},
∴BC=\sqrt{8+2-2×2\sqrt{2}×\sqrt{2}×\frac{1}{2}}=\sqrt{6},
如圖,連接上下底面外心,O為PQ的中點,OP⊥平面ABC,
AP=\frac{\sqrt{6}}{2×\frac{\sqrt{3}}{2}}=\sqrt{2}
則球的半徑為OA,
由題意OP=\frac{1}{2},∴OA=\sqrt{\frac{1}{4}+2}=\frac{3}{2},
所以球的體積為:\frac{4}{3}πR3=\frac{9}{2}π
故選B.

點評 本題是基礎(chǔ)題,解題思路是:先求底面外接圓的半徑,轉(zhuǎn)化為直角三角形,求出球的半徑,這是三棱柱外接球的常用方法;本題考查空間想象能力,計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

14.已知等差數(shù)列{an}的前n項和為Sn,且a1=-20,若Sn的最小值僅為S6,則公差d的取值范圍是(\frac{10}{3},4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖所示,在正方體ABCD-A1B1C1D1中,棱長為2,E、F分別是棱DD1、C1D1的中點.
(1)求三棱錐B1-A1BE的體積;
(2)試判斷直線B1F與平面A1BE是否平行,如果平行,請在平面A1BE上作出與B1F平行的直線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.數(shù)列{an}中,a2n=a2n-1+(-1)n,a2n+1=a2n+n,a1=1,則a20=46.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.漳州市“網(wǎng)約車”的現(xiàn)行計價標準是:路程在2km以內(nèi)(含2km)按起步價8元收取,超過2km后的路程按1.9元/km收取,但超過10km后的路程需加收50%的返空費(即單價為1.9×(1+50%)=2.85元).
(1)將某乘客搭乘一次“網(wǎng)約車”的費用f(x)(單位:元)表示為行程x(0<x≤60,單位:km)的分段函數(shù);
(2)某乘客的行程為16km,他準備先乘一輛“網(wǎng)約車”行駛8km后,再換乘另一輛“網(wǎng)約車”完成余下行程,請問:他這樣做是否比只乘一輛“網(wǎng)約車”完成全部行程更省錢?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知x,y滿足約束條件\left\{\begin{array}{l}{x-y+6≥0}\\{x≤3}\\{x+y+k≥0}\end{array}\right.,且z=2x+4y的最小值為2,則常數(shù)k=( �。�
A.2B.-2C.6D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.拋物線x2=4y的焦點為F,過點(0,-1)作直線交拋物線于不同兩點A,B,以AF,BF為鄰邊作平行四邊形FARB,求頂點R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn),G,H分別為AA1,AB,BB1,B1C1的中點,則異面直線EF與GH所成的角等于( �。�
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在直三棱柱ABC-A1B1C1中,D,E分別是BC,A1B1的中點.
(1)求證:DE∥平面ACC1A1
(2)設(shè)M為AB上一點,且AM=\frac{1}{4}AB,若直三棱柱ABC-A1B1C1的所有棱長均相等,求直線DE與直線A1M所成角的正切值.

查看答案和解析>>

同步練習冊答案