△OAB是邊長為4的正三角形,CO⊥平面OAB且CO=2,設D、E分別是OA、AB的中點.
(1)求證:OB平面CDE;
(2)求三棱錐O-CDE的體積;
(3)在CD上是否存在點M,使OM⊥平面CDE,若存在,則求出M點的位置,若不存在,請說明理由.
(1)證明:∵DE是△AOB的中位線
∴DEOB
又∵DE?平面CDE,OB?平面CDE
∴OB平面CDE;
(2)∵△OAB是邊長為4的正三角形,
D、E分別是OA、AB的中點,
∴DE=2,∴S△ODE=
1
2
×2×
3
=
3

又∵CO⊥平面OAB且CO=2,
∴VO-CDE=VC-ODE=
1
3
×S△ODE×OC
=
2
3
3

(3)假設在CD上存在點M,使OM⊥平面CDE,則OM⊥DE,
又∵CO⊥DE,CO∩OM=O,∴DE⊥平面OCD,∴DE⊥OA,
這與已知∠DEA=60°矛盾,
∴在CD上不存在點M,使OM⊥平面CDE.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在正方體ABCD-A1B1C1D1
(1)求證:AC⊥BD1
(2)求異面直線AC與BC1所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,正三棱柱ABC-A1B1C1的各棱長都為m,E是側棱CC1的中點,求證AB1⊥平面A1BE.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,三棱錐P-ABC中,PA=AB,PC=BC,E、F、G分別為PA、AB、PB的中點,
(1)求證:EF平面PBC;
(2)求證:EF⊥平面ACG.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在長方體ABCD-A1B1C1D1中,底面ABCD是正方形,E是DD1的中點.
(1)求證:AC⊥B1D;
(2)若B1D⊥平面ACE,求
AA1
AB
的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在正方體ABCD-A1B1C1D1中,E是CC1的中點,F(xiàn)是AC,BD的交點.
求證:A1F⊥平面BED.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知四棱錐S-ABCD的底面ABCD是矩形,M、N分別是CD、SC的中點,SA⊥底面ABCD,SA=AD=1,AB=
2

(I)求證:MN⊥平面ABN;
(II)求二面角A-BN-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知一個四棱錐的三視圖如圖所示,則該四棱錐的四個側面中,直角三角形的個數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知△BCD中,∠BCD=90°,AB⊥平面BCD,BC=CD=1,AB=
3
,E、F
分別為AC、AD的中點.
(1)求證:平面BEF⊥平面ABC;
(2)求直線AD與平面BEF所成角的正弦值.

查看答案和解析>>

同步練習冊答案