在平面直角坐標(biāo)系xOy中,拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)F的坐標(biāo)為(1,0).

(1) 求拋物線C的標(biāo)準(zhǔn)方程;

(2) 設(shè)M、N是拋物線C的準(zhǔn)線上的兩個(gè)動(dòng)點(diǎn),且它們的縱坐標(biāo)之積為-4,直線MO、NO與拋物線的交點(diǎn)分別為點(diǎn)A、B,求證:動(dòng)直線AB恒過(guò)一個(gè)定點(diǎn).


解:(1) 設(shè)拋物線的標(biāo)準(zhǔn)方程為y2=2px(p>0),則=1,p=2,所以?huà)佄锞方程為y2=4x.

(2) 拋物線C的準(zhǔn)線方程為x=-1,設(shè)M(-1,y1),N(-1,y2),其中y1y2=-4,直線MO的方程:y=-y1x,將y=-y1x與y2=4x聯(lián)立解得A點(diǎn)坐標(biāo).同理可得B點(diǎn)坐標(biāo),則直線AB的方程為:,整理得(y1+y2)y-4x+4=0,故直線AB恒過(guò)定點(diǎn)(1,0).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知α是三角形的內(nèi)角,且sinα+cosα=.

(1) 求tanα的值;

(2) 將用tanα表示出來(lái),并求其值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


如圖,F(xiàn)是中心在原點(diǎn)、焦點(diǎn)在x軸上的橢圓C的右焦點(diǎn),直線l:x=4是橢圓C的右準(zhǔn)線,F(xiàn)到直線l的距離等于3.

(1) 求橢圓C的方程;

(2) 點(diǎn)P是橢圓C上動(dòng)點(diǎn),PM⊥l,垂足為M.是否存在點(diǎn)P,使得△FPM為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


 已知橢圓C:+y2=1的兩焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P(x0,y0)滿(mǎn)足+y≤1,則PF1+PF2的取值范圍為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


 如圖,已知梯形ABCD中|AB|=2|CD|,點(diǎn)E滿(mǎn)足,雙曲線過(guò)C、D、E三點(diǎn),且以A、B為焦點(diǎn).當(dāng)≤λ≤時(shí),求雙曲線離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知橢圓C:=1(a>b>0)的離心率e=,一條準(zhǔn)線方程為x=

(1) 求橢圓C的方程;

(2) 設(shè)G、H為橢圓C上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),且OG⊥OH.

① 當(dāng)直線OG的傾斜角為60°時(shí),求△GOH的面積;

② 是否存在以原點(diǎn)O為圓心的定圓,使得該定圓始終與直線GH相切?若存在,請(qǐng)求出該定圓方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


 已知斜率為2的直線l過(guò)拋物線y2=ax(a>0)的焦點(diǎn)F,且與y軸相交于點(diǎn)A,若△OAF(O為坐標(biāo)原點(diǎn))的面積為4,則拋物線方程為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


如圖所示,直線l1和l2相交于點(diǎn)M,l1⊥l2,點(diǎn)N∈l1,以A、B為端點(diǎn)的曲線段C上任一點(diǎn)到l2的距離與到點(diǎn)N的距離相等.若△AMN為銳角三角形,|AM|=,|AN|=3,且|NB|=6,建立適當(dāng)?shù)淖鴺?biāo)系,求曲線段C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知橢圓在橢圓上.

(1) 求橢圓的離心率;

(2) 設(shè)A為橢圓的左頂點(diǎn),O為坐標(biāo)原點(diǎn).若點(diǎn)Q在橢圓上且滿(mǎn)足AQ=AO,求直線OQ的斜率的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案