已知函數(shù),.
(1)若且,試討論的單調(diào)性;
(2)若對,總使得成立,求實(shí)數(shù)的取值范圍.
(1)當(dāng)時(shí),的增區(qū)間為,減區(qū)間為;當(dāng)時(shí),在單減;當(dāng)時(shí),的增區(qū)間為,減區(qū)間為;(2).
【解析】
試題分析:(1)先求導(dǎo),再比較與的大小分類討論的單調(diào)性;(2)對都使得成立,即在內(nèi)有解,即在內(nèi)有解,即,再利用導(dǎo)數(shù)求的最大值.
試題解析:(1).
當(dāng)時(shí),的增區(qū)間為,減區(qū)間為;
當(dāng)時(shí),在單減;
當(dāng)時(shí),的增區(qū)間為,減區(qū)間為.
(2)對都使得成立,即在內(nèi)有解,即在內(nèi)有解,即.令,則.,.
考點(diǎn):1.導(dǎo)數(shù)與函數(shù)的單調(diào)性;2.恒成立問題中的參數(shù)取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
科目:高中數(shù)學(xué) 來源: 題型:
x |
1 |
n2(n+1)2 |
1 |
4n |
3 |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2+1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com