【題目】給定兩個命題,P:對任意實數(shù)x都有ax2+ax+10恒成立;Q:關(guān)于x的方程x2﹣x+a=0有實數(shù)根;如果“P∧Q”為假,且“P∨Q”為真,求實數(shù)a的取值范圍.

【答案】

【解析】

試題根據(jù)二次函數(shù)恒成立的充要條件,我們可以求出命題p為真時,實數(shù)a的取值范圍,根據(jù)二次函數(shù)有實根的充要條件,我們可以求出命題q為真時,實數(shù)a的取值范圍,然后根據(jù)p∨q為真命題,p∧q為假命題,則命題p,q中一個為真一個為假,分類討論后,即可得到實數(shù)a的取值范圍.

解:對任意實數(shù)x都有ax2+ax+10恒成立a=00≤a4;

關(guān)于x的方程x2﹣x+a=0有實數(shù)根;

由于“P∧Q”為假,且“P∨Q”為真,則PQ一真一假;

1)如果P真,且Q假,有;

2)如果Q真,且P假,有

所以實數(shù)a的取值范圍為:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知動點G(x,y)滿足

(1)求動點G的軌跡C的方程;

(2)過點Q(1,1)作直線L與曲線交于不同的兩點,且線段中點恰好為Q.求的面積;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在十九大會議上,黨中央明確強調(diào)堅持房子是用來住的……”,得到了各級政府及相關(guān)單位的積極響應.在濟寧,隨著濟寧一中升學率的節(jié)節(jié)攀升,北湖校區(qū)附近的房價也在不斷攀升,為滿足廣大人民群眾的購房需求,一中北湖附近的一個樓盤開盤價已限定為每平米不超過7千元,每層每平米的價格(千元)與樓層之間符合一個二次函數(shù)的變化規(guī)律,期中一棟高33層的高層住宅最低銷售價為底層(一樓)每平米6千元,最高價為第20層每平米7千元.

1)根據(jù)以上信息寫出這個二次函數(shù)的表達式及定義域.

2)某單位考慮到職工子女去一中就學的實際需要,計劃團購住房,盡力爭取團購優(yōu)惠政策,如果得到的優(yōu)惠政策是在每套房總價的基礎上減去20(千元)后,再以余款的九五折將建筑面積為95平米的房型出售給該單位職工,張某和李某分別選定了1樓和25樓,請你根據(jù)函數(shù)性質(zhì),比較張某和李某誰獲得的優(yōu)惠額度更大一些?這一優(yōu)惠的額度為多少(千元)?(注:九五折--按原價的折為現(xiàn)價)(精確到0.001千元).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,且圓經(jīng)過橢圓C的上、下頂點.

1)求橢圓C的方程;

2)若直線l與橢圓C相切,且與橢圓相交于MN兩點,證明:的面積為定值(O為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】賽季的歐洲冠軍聯(lián)賽八分之一決賽的首回合較量將于北京時間2018年2月15日3:45在伯納烏球場打響.由羅領(lǐng)銜的衛(wèi)冕冠軍皇家馬德里隊(以下簡稱“皇馬”)將主場迎戰(zhàn)剛剛創(chuàng)下歐冠小組賽最多進球記錄的法甲領(lǐng)頭羊巴黎圣日曼隊(以下簡稱“巴黎”),激烈對決,一觸即發(fā).比賽分上,下兩個半場進行,現(xiàn)在有加泰羅尼亞每題測皇馬,巴黎的每半場進球數(shù)及概率如表:

0

1

2

巴黎

皇馬

(1)按照預測,求巴黎在比賽中至少進兩球的概率;

(2)按照預測,若設為皇馬總進球數(shù),為巴黎總進球數(shù),求的分布列,并判斷的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):由表中數(shù)據(jù),求得線性回歸方程為,若從這些樣本中任取一點,則它在回歸直線左下方的概率為______.

單價(元)

4

5

6

7

8

9

銷量(件)

90

84

83

80

75

68

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】大衍數(shù)列,來源于《乾坤譜》中對易傳“大衍之數(shù)五十“的推論.主要用于解釋中國傳統(tǒng)文化中的太極衍生原理數(shù)列中的每一項,都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和是中華傳統(tǒng)文化中隱藏著的世界數(shù)學史上第一道數(shù)列題其規(guī)律是:偶數(shù)項是序號平方再除以2,奇數(shù)項是序號平方減1再除以2,其前10項依次是0,2,4,8,12,18,24,32,40,50,,如圖所示的程序框圖是為了得到大衍數(shù)列的前100項而設計的,那么在兩個判斷框中,可以先后填入( )

A. 是偶數(shù)?,? B. 是奇數(shù)?,?

C. 是偶數(shù)?, ? D. 是奇數(shù)?,?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=fx)+sinx[]上單調(diào)遞增,則fx)可能是( 。

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關(guān)于函數(shù)有如下四個結(jié)論:

是偶函數(shù);②在區(qū)間上單調(diào)遞增;③最大值為;④上有四個零點,其中正確命題的序號是_______

查看答案和解析>>

同步練習冊答案