【題目】如圖,橢圓的右頂點(diǎn)為,左、右焦點(diǎn)分別為,過點(diǎn)且斜率為的直線與軸交于點(diǎn),與橢圓交于另一個(gè)點(diǎn),且點(diǎn)軸上的射影恰好為點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)的直線與橢圓交于兩點(diǎn)(不與重合),若,求直線的方程.

【答案】(1) ;(2)

【解析】試題分析:)當(dāng)時(shí),BF1x軸,求出,列出方程組,求出a,b即可得到橢圓的標(biāo)準(zhǔn)方程.

Ⅱ)通過民間的比推出.設(shè)M(x1,y1),N(x2,y2),設(shè)MN方程為y=kx﹣1,聯(lián)立直線與橢圓方程,利用韋達(dá)定理轉(zhuǎn)化情況直線的斜率,求出直線方程.

試題解析:

(1)當(dāng)時(shí) 軸,得到點(diǎn)

所以,所以橢圓的方程是

2)因?yàn)?/span> 所以

設(shè),則,有

①當(dāng)斜率不存在, 的方程為

,(不合條件,舍去)

②當(dāng)斜率存在,由(Ⅰ)可知,設(shè)方程為,

聯(lián)立方程得:

由韋達(dá)定理可得,將代入可得,

.所以

所以直線的方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)gsinxcosxsin2x,將其圖象向左移個(gè)單位,并向上移個(gè)單位,得到函數(shù)facos2b的圖象.

(Ⅰ)求實(shí)數(shù)a,b, 的值;

(Ⅱ)設(shè)函數(shù)φgf,x,求函數(shù)φ的單調(diào)遞增區(qū)間和最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2018屆吉林省普通中學(xué)高三第二次調(diào)研】設(shè)橢圓的左焦點(diǎn)為,右頂點(diǎn)為,離心率為,短軸長為,已知是拋物線的焦點(diǎn).

(1)求橢圓的方程和拋物線的方程;

(2)若拋物線的準(zhǔn)線上兩點(diǎn)關(guān)于軸對稱,直線與橢圓相交于點(diǎn)異于點(diǎn)),直線軸相交于點(diǎn),若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某讀者協(xié)會為了了解該地區(qū)居民睡前看書的時(shí)間情況,從該地區(qū)睡前看書的居民中隨機(jī)選取了n人進(jìn)行調(diào)查,現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)得到如圖所示的頻率分布直方圖.則下列說法正確的是(  )

A. 睡前看書時(shí)間介于40~50分鐘的頻率為0.03

B. 睡前看書時(shí)間低于30分鐘的頻率為0.67

C. 若n=1000,則可估計(jì)本次調(diào)查中睡前看書時(shí)間介于30~50分鐘的有67人

D. 若n=1000,則可估計(jì)本次調(diào)查中睡前看書時(shí)間介于20~40分鐘的有600人

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“中國人均讀書4.3本(包括網(wǎng)絡(luò)文學(xué)和教科書),比韓國的11本、法國的20本、日本的40本、猶太人的64本少得多,是世界上人均讀書最少的國家.”這個(gè)論斷被各種媒體反復(fù)引用,出現(xiàn)這樣的統(tǒng)計(jì)結(jié)果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國是傳統(tǒng)的文明古國、禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動,準(zhǔn)備進(jìn)一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現(xiàn)對小區(qū)內(nèi)看書人員進(jìn)行年齡調(diào)查,隨機(jī)抽取了一天40名讀書者進(jìn)行調(diào)查,將他們的年齡分成6段: , , , 后得到如圖所示的頻率分布直方圖.問:

(1)估計(jì)在40名讀書者中年齡分布在的人數(shù);

(2)求40名讀書者年齡的平均數(shù)和中位數(shù);

(3)若從年齡在的讀書者中任取2名,求這兩名讀書者年齡在的人數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

1)若,求曲線在點(diǎn)處的切線方程;

2)若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)exax2(xR)e2.718 28…為自然對數(shù)的底數(shù).

(1)求函數(shù)f(x)在點(diǎn)P(0,1)處的切線方程;

(2)若函數(shù)f(x)R上的單調(diào)遞增函數(shù),試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)為定義在R上的偶函數(shù),當(dāng)x≥0時(shí),有f(x1)=-f(x),且當(dāng)x∈[0,1)時(shí),f(x)log2(x1),給出下列命題

f(2014)f(2015)0;

函數(shù)f(x)在定義域上是周期為2的函數(shù);

直線yx與函數(shù)f(x)的圖象有2個(gè)交點(diǎn);

函數(shù)f(x)的值域?yàn)?/span>(1,1)

其中正確的是(  )

A. ①② B. ②③

C. ①④ D. ①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在(0,+∞)上的單調(diào)函數(shù)f(x),x∈(0,+∞),f[f(x)﹣lnx]=1,則方程f(x)﹣f′(x)=1的解所在區(qū)間是 (  )

A. (2,3) B. C. D. (1,2)

查看答案和解析>>

同步練習(xí)冊答案