12.函數(shù)f(x)=lnx+3x-9的零點(diǎn)位于( 。
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

分析 根據(jù)函數(shù)的零點(diǎn)的判定定理判斷即可.

解答 解:函數(shù)f(x)=lnx+3x-9在其定義域?yàn)樵龊瘮?shù),且f(3)=ln3+9-9>0,f(2)=ln2+6-9<0,
∴f(2)•f(3)<0,
∴函數(shù)f(x)=lnx+3x-9的零點(diǎn)位于(2,3),
故選:B

點(diǎn)評(píng) 此題是基礎(chǔ)題.考查函數(shù)的零點(diǎn)的判定定理,以及學(xué)生的計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=a|x-b|(a>0,a≠1),則對(duì)任意的非零實(shí)數(shù)a,b,m,n,p,關(guān)于x的方程m[f(x)]2+nf(x)+p=0的解集都不可能是( 。
A.{1,3}B.{1,4}C.{1,3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,cosB=-$\frac{5}{13}$,sinC=$\frac{3}{5}$
(Ⅰ)求sinA的值;
(Ⅱ)若△ABC的面積S${\;}_{△ABC}=\frac{33}{2}$,求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)為R上的偶函數(shù).當(dāng)x≤0時(shí),f(x)=4-x-a•2-x(a>0)
(Ⅰ)求函數(shù)f(x)在(0,+∞)上的解析式;
(Ⅱ)求函數(shù)f(x)在(0,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.A,B兩種規(guī)格的產(chǎn)品需要在甲、乙兩臺(tái)機(jī)器上各自加工一道工序才能成為成品.已知A產(chǎn)品需要在甲機(jī)器上加工3小時(shí),在乙機(jī)器上加工1小時(shí);B產(chǎn)品需要在甲機(jī)器上加工1小時(shí),在乙機(jī)器上加工3小時(shí).在一個(gè)工作日內(nèi),甲機(jī)器至多只能使用11小時(shí),乙機(jī)器至多只能使用9小時(shí).A產(chǎn)品每件利潤300元,B產(chǎn)品每件利潤400元,求在一個(gè)工作日內(nèi)的利潤最大時(shí),需要生產(chǎn)甲產(chǎn)品與乙產(chǎn)品多少件?
(在如圖所示平面直角坐標(biāo)系中畫圖)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,sinA:sinB:sinC=4:3:2,那么cosC的值為$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知在△ABC中,∠ACB=90°,BC=6,AC=8,P是線段AB上的點(diǎn),則P到AC,BC的距離的乘積的最大值為(  )
A.12B.8C.$8\sqrt{3}$D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}滿足an=2an-1+2n-1(n∈N*,n≥2)且a1=5.
(1)求a2,a3的值;
(2)若數(shù)列$\{\frac{{{a_n}+λ}}{2^n}\}$為等差數(shù)列,請(qǐng)求出實(shí)數(shù)λ;
(3)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=$\sqrt{2}$,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,點(diǎn)P在∠AOB內(nèi),且∠AOP=$\frac{π}{4}$,設(shè)$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,則$\frac{n}{m}$等于( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案