【題目】已知O為坐標(biāo)原點(diǎn),F(xiàn)是橢圓C: + =1(a>b>0)的左焦點(diǎn),A,B分別為C的左,右頂點(diǎn).P為C上一點(diǎn),且PF⊥x軸,過點(diǎn)A的直線l與線段PF交于點(diǎn)M,與y軸交于點(diǎn)E.若直線BM經(jīng)過OE的中點(diǎn),則C的離心率為(
A.
B.
C.
D.

【答案】A
【解析】解:由題意可設(shè)F(﹣c,0),A(﹣a,0),B(a,0), 令x=﹣c,代入橢圓方程可得y=±b ,
可得P(﹣c,± ),
設(shè)直線AE的方程為y=k(x+a),
令x=﹣c,可得M(﹣c,k(a﹣c)),令x=0,可得E(0,ka),
設(shè)OE的中點(diǎn)為H,可得H(0, ),
由B,H,M三點(diǎn)共線,可得kBH=kBM
即為 = ,
化簡可得 = ,即為a=3c,
可得e= =
故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,Q為AD的中點(diǎn),M是棱PC的中點(diǎn),PA=PD=PC,BC= AD=2,CD=4
(1)求證:直線PA∥平面QMB;
(2)若二面角P﹣AD﹣C為60°,求直線PB與平面QMB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,A、B、C所對的邊分別為a、b、c,若a2+b2+2c2=8,則△ABC面積的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin+cos , x∈R.
(1)求函數(shù)f(x)的最小正周期,并求函數(shù)f(x)在x∈[﹣2π,2π]上的單調(diào)遞增區(qū)間;
(2)函數(shù)f(x)=sinx(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換可以得到函數(shù)f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生寒假期間學(xué)習(xí)情況,學(xué)校對某班男、女學(xué)生學(xué)習(xí)時間進(jìn)行調(diào)查,學(xué)習(xí)時間按整小時統(tǒng)計(jì),調(diào)查結(jié)果繪成折線圖如下:
(Ⅰ)已知該校有400名學(xué)生,試估計(jì)全校學(xué)生中,每天學(xué)習(xí)不足4小時的人數(shù);
(Ⅱ)若從學(xué)習(xí)時間不少于4小時的學(xué)生中選取4人,設(shè)選到的男生人數(shù)為X,求隨機(jī)變量X的分布列;
(Ⅲ)試比較男生學(xué)習(xí)時間的方差 與女生學(xué)習(xí)時間方差 的大。ㄖ恍鑼懗鼋Y(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: 的右焦點(diǎn)為F(1,0),且點(diǎn)(﹣1, )在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知動直線l過點(diǎn)F,且與橢圓C交于A,B兩點(diǎn),試問x軸上是否存在定點(diǎn)Q,使得 恒成立?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國南宋著名數(shù)學(xué)家秦九韶發(fā)現(xiàn)了從三角形三邊求三角形面積的“三斜公式”,設(shè)△ABC三個內(nèi)角A、B、C所對的邊分別為a、b、c,面積為S,則“三斜求積”公式為 .若a2sinC=4sinA,(a+c)2=12+b2 , 則用“三斜求積”公式求得△ABC的面積為(
A.
B.2
C.3
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對函數(shù)f(x),如果存在x0≠0使得f(x0)=﹣f(﹣x0),則稱(x0 , f(x0))與(﹣x0 , f(﹣x0))為函數(shù)圖象的一組奇對稱點(diǎn).若f(x)=ex﹣a(e為自然數(shù)的底數(shù))存在奇對稱點(diǎn),則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,1)
B.(1,+∞)
C.(e,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中有大小相同的紅、黃兩種顏色的球各1個,從中任取1只,有放回地抽取3次. 求:
(1)3只全是紅球的概率;
(2)3只顏色全相同的概率;
(3)3只顏色不全相同的概率.

查看答案和解析>>

同步練習(xí)冊答案