A. | 2$\sqrt{2}$ | B. | $\sqrt{10}$ | C. | $\sqrt{11}$ | D. | 2$\sqrt{3}$ |
分析 由題意,△PEQ周長取得最小值時,P在B1C1上,在平面B1C1CB上,設(shè)E關(guān)于B1C的對稱點(diǎn)為M,關(guān)于B1C1的對稱點(diǎn)為N,求出MN,即可得出結(jié)論.
解答 解:由題意,△PEQ周長取得最小值時,P在B1C1上,
在平面B1C1CB上,設(shè)E關(guān)于B1C的對稱點(diǎn)為M,關(guān)于B1C1的對稱點(diǎn)為N,則
EM=2.EN=$\sqrt{2}$,∠MEN=135°,
∴MN=$\sqrt{4+2-2×2×\sqrt{2}×(-\frac{\sqrt{2}}{2})}$=$\sqrt{10}$.
故選:B.
點(diǎn)評 本題考查棱柱的結(jié)構(gòu)特征,考查對稱點(diǎn)的運(yùn)用,考查余弦定理,考查學(xué)生的計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{11}{2}$ | B. | -6 | C. | -$\frac{13}{2}$ | D. | -$\frac{25}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com