分析 (1)設等差數(shù)列{an}的公差為d,利用Sn=n2,可得a1=S1=1,a1+a2=4,解出即可得出.
(2)bn=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,利用“裂項求和”方法即可得出.
解答 解:(1)設等差數(shù)列{an}的公差為d,∵Sn=n2,∴a1=S1=1,a1+a2=22=4,解得a1=1,a2=3.
∴d=a2-a1=2,∴an=1+2(n-1)=2n-1.
(2)bn=$\frac{1}{{a}_{n+1}{a}_{n}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴數(shù)列{bn}的前n項和Tn=$\frac{1}{2}[(1-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.
點評 本題考查了等差數(shù)列的通項公式及其求和公式、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
投入資金x | 1 | 2 | 3 | 4 | 5 |
利潤y | 2 | 3 | 5 | 6 | 9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\root{n}{{a}^{n}}$=a | B. | ($\frac{n}{m}$)7=n${\;}^{\frac{1}{7}}$m7 | C. | $\root{12}{(-2)^{4}}$=$\root{3}{-2}$ | D. | $\sqrt{\root{3}{9}}$=$\root{3}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com