17.已知cosα=-cos2$\frac{α}{2}$,則cos$\frac{α}{2}$的值等于±$\frac{\sqrt{3}}{3}$.

分析 由已知利用二倍角的余弦函數(shù)公式即可化簡求值得解.

解答 解:∵cosα=2cos2$\frac{α}{2}$-1=-cos2$\frac{α}{2}$,
∴可得:cos2$\frac{α}{2}$=$\frac{1}{3}$,
∴cos$\frac{α}{2}$=±$\frac{\sqrt{3}}{3}$.
故答案為:±$\frac{\sqrt{3}}{3}$.

點評 本題主要考查了二倍角的余弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=2x-$\frac{1}{2^x}$(x∈R).
(1)討論f(x)的奇偶性;
(2)若2xf(2x)+mf(x)≥0對任意的x∈[0,+∞)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在△ABC中,∠ABC=90°,AB=$\sqrt{3}$,BC=1,P為△ABC內(nèi)一點,∠BPC=90°.
(Ⅰ)若PB=$\frac{1}{2}$,求PA;
(Ⅱ)若∠APB=150°,設(shè)∠PBA=α,求tan2α值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,角A,B,C所對的邊分別為a,b,c,若b=2,B=45°,且此三角形只有一個解,則實數(shù)a的取值范圍是(0,2]∪{2$\sqrt{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.三段論演繹 (1)因為菱形是平行四邊形,(2)四邊形ABCD是菱形,(3)所以四邊形ABCD是平行四邊形,以上三段論演繹中“小前提”是(  )
A.(1)B.(2)C.(3)D.(1)(2)(3)都是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.函數(shù)f(x)=$\frac{1}{{{2^x}-2}}$+a關(guān)于(1,0)對稱.
(1)求a得值;
(2)解不等式f(x)<$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若x,y滿足約束條件$\left\{\begin{array}{l}x≥0\\ x+3y≥4\\ 3x+y≤4\end{array}\right.$,則z=2x-y的最大值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某同學(xué)先后投擲一枚骰子兩次,第一次向上的點數(shù)記為x,第二次向上的點數(shù)記為y,在直角坐標(biāo)xOy系中,以(x,y)為坐標(biāo)的點落在直線2x-y=1上的概率為$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=$\frac{{\sqrt{9-{x^2}}}}{{{{log}_2}({x+1})}}$的定義域是( 。
A.(-1,3)B.(-1,3]C.(-1,0)∪(0,3)D.(-1,0)∪(0,3]

查看答案和解析>>

同步練習(xí)冊答案