【題目】某區(qū)的區(qū)人大代表有教師6人,分別來自甲、乙、丙、丁四個學(xué)校,其中甲校教師記為,乙校教師記為,丙校教師記為,丁校教師記為.現(xiàn)從這6名教師代表中選出3名教師組成十九大報告宣講團(tuán),要求甲、乙、丙、丁四個學(xué)校中,每校至多選出1名.
(1)請列出十九大報告宣講團(tuán)組成人員的全部可能結(jié)果;
(2)求教師被選中的概率;
(3)求宣講團(tuán)中沒有乙校教師代表的概率.
【答案】(1)見解析(2) (3)
【解析】分析:(1)某區(qū)的區(qū)大代表中有教師6人,分別來自甲、乙、丙、丁四個學(xué)校,其中甲校教師記為A1,A2,乙校教師記為B1,B2,丙校教師記為C,丁校教師記為D.從這6名教師代表中選出3名教師組成十九大政策宣講團(tuán),利用列舉法能求出組成人員的全部可能結(jié)果.
(2)組成人員的全部可能結(jié)果中,利用列舉法求出A1被選中的結(jié)果有5種,由此能求出教師A1被選中的概率.
(3)利用列舉法求出宣講團(tuán)中沒有乙校代表的結(jié)果有2種,由此能求出宣講團(tuán)中沒有乙校教師代表的概率.
詳解:(1)從6名教師代表中選出3名教師組成十九大政策宣講團(tuán),組成人員的全部可能結(jié)果有:,,, ,,,,,,,,共有12種不同可能結(jié)果.
(2)組成人員的全部可能結(jié)果中,被選中的結(jié)果有,,, ,共有5種,
所以所求概率.
(3)宣講團(tuán)沒有乙校代表的結(jié)果有:,共2種結(jié)果,所以所求概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線,(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的普通方程;
(2)若分別為曲線上的動點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)列,若存在常數(shù)M,使得對任意,與中至少有一個不小于M,則記作,那么下列命題正確的是( ).
A.若,則數(shù)列各項均大于或等于M;
B.若,則;
C.若,,則;
D.若,則;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)y=f(x)為偶函數(shù),求k 的值;
(2)求函數(shù)y=f(x)在區(qū)間[0,4]上的最大值;
(3)若方程f(x)=0 有且僅有一個根,求實數(shù)k 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱ABCD-A1B1C1D1中,CD∥AB, AB⊥BC,AB=BC=2CD=2,側(cè)棱AA1⊥平面ABCD.且點M是AB1的中點
(1)證明:CM∥平面ADD1A1;
(2)求點M到平面ADD1A1的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一只紅鈴蟲的產(chǎn)卵數(shù)y和溫度x有關(guān),現(xiàn)收集了6組觀測數(shù)據(jù)于下表中,通過散點圖可以看出樣本點分布在一條指數(shù)型函數(shù)y=的圖象的周圍.
(1)試求出y關(guān)于x的上述指數(shù)型的回歸曲線方程(結(jié)果保留兩位小數(shù));
(2)試用(1)中的回歸曲線方程求相應(yīng)于點(24,17)的殘差.(結(jié)果保留兩位小數(shù))
溫度x(°C) | 20 | 22 | 24 | 26 | 28 | 30 |
產(chǎn)卵數(shù)y(個) | 6 | 9 | 17 | 25 | 44 | 88 |
z=lny | 1.79 | 2.20 | 2.83 | 3.22 | 3.78 | 4.48 |
幾點說明:
①結(jié)果中的都應(yīng)按題目要求保留兩位小數(shù).但在求時請將的值多保留一位即用保留三位小數(shù)的結(jié)果代入.
②計算過程中可能會用到下面的公式:回歸直線方程的斜率==,截距.
③下面的參考數(shù)據(jù)可以直接引用:=25,=31.5,≈3.05,=5248,≈476.08,,ln18.17≈2.90.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年11月、12月全國大范圍流感爆發(fā),為研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,一興趣小組抄錄了某醫(yī)院11月到12月間的連續(xù)6個星期的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期 | 第一周 | 第二周 | 第三周 | 第四周 | 第五周 | 第六周 |
晝夜溫差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)y(個) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗。
(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩個星期的概率;
(Ⅱ)若選取的是第一周與第六周的兩組數(shù)據(jù),請根據(jù)第二周到第五周的4組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(Ⅲ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式: )
參考數(shù)據(jù): 1092, 498
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中,E為線段AB的中點,將△ADE沿直線DE翻折成△A′DE,使得平面A′DE⊥平面BCDE,F為線段A′C的中點.
(Ⅰ)求證:BF∥平面A′DE;
(Ⅱ)求直線A′B與平面A′DE所成角的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com