【題目】已知函數(shù)(其中)的圖象上相鄰兩個最高點的距離為.

1)求函數(shù)的圖象的所有對稱軸;

2)若函數(shù)內(nèi)有兩個零點,求的取值范圍.

【答案】1;(2.

【解析】

1)根據(jù)題中條件可得出函數(shù)的最小正周期,可計算出的值,令,可得出函數(shù)的圖象的對稱軸方程;

2)由,可得出,令,則問題可以轉(zhuǎn)化為直線與函數(shù)在區(qū)間上的圖象有兩個交點,利用數(shù)形結(jié)合思想可得出實數(shù)的取值范圍.

1)因為的圖象上相鄰兩個最高點的距離為,則該函數(shù)的最小正周期為,,

所以,.

,解得,

因此,函數(shù)的圖象的所有對稱軸的方程為

2)由,可得出,

,當時,,

則直線與函數(shù)在區(qū)間上的圖象有兩個交點,如下圖所示:

由圖象知,當時,直線與函數(shù)在區(qū)間上的圖象有兩個交點.

因此,實數(shù)的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】當前,以“立德樹人”為目標的課程改革正在有序推進.高中聯(lián)招對初三畢業(yè)學生進行體育測試,是激發(fā)學生、家長和學校積極開展體育活動,保證學生健康成長的有效措施.程度2019年初中畢業(yè)生升學體育考試規(guī)定,考生必須參加立定跳遠、擲實心球、1分鐘跳繩三項測試,三項考試滿分50分,其中立定跳遠15分,擲實心球15分,1分鐘跳繩20分.某學校在初三上期開始時要掌握全年級學生每分鐘跳繩的情況,隨機抽取了100名學生進行測試,得到下邊頻率分布直方圖,且規(guī)定計分規(guī)則如下表:

每分鐘跳繩個數(shù)

得分

17

18

19

20

(Ⅰ)現(xiàn)從樣本的100名學生中,任意選取2人,求兩人得分之和不大于35分的概率;;

(Ⅱ)若該校初三年級所有學生的跳繩個數(shù)服從正態(tài)分布,用樣本數(shù)據(jù)的平均值和方差估計總體的期望和方差,已知樣本方差(各組數(shù)據(jù)用中點值代替).根據(jù)往年經(jīng)驗,該校初三年級學生經(jīng)過一年的訓(xùn)練,正式測試時每人每分鐘跳繩個數(shù)都有明顯進步,假設(shè)今年正式測試時每人每分鐘跳繩個數(shù)比初三上學期開始時個數(shù)增加10個,現(xiàn)利用所得正態(tài)分布模型:

預(yù)計全年級恰有2000名學生,正式測試每分鐘跳182個以上的人數(shù);(結(jié)果四舍五入到整數(shù))

若在全年級所有學生中任意選取3人,記正式測試時每分鐘跳195以上的人數(shù)為ξ,求隨機變量的分布列和期望.

附:若隨機變量服從正態(tài)分布,則,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一塊圓心角為120度,半徑為的扇形鋼板(為弧的中點),現(xiàn)要將其裁剪成一個五邊形磨具,其下部為等腰三角形,上部為矩形.設(shè)五邊形的面積為.

(1)寫出關(guān)于的函數(shù)表達式,并寫出的取值范圍;

(2)當取得最大值時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB分別是橢圓的左、右端點,F是橢圓的右焦點,點P在橢圓上,且位于x軸上方,PAPF.

1P的坐標;

2設(shè)M是橢圓長軸AB上的一點,M到直線AP的距離等于MB,求橢圓上的點到點M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如下表

商店名稱

A

B

C

D

E

銷售額x(千萬元)

3

5

6

7

9

利潤額y(百萬元)

2

3

3

4

5

1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關(guān)性.

(2)用最小二乘法計算利潤額y對銷售額x的回歸直線方程.

(3)當銷售額為4(千萬元)時,估計利潤額的大小.

其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCD中,AB= ,AD=2,E,F為線段AB的三等分點,G、H為線段DC的三等分點.將長方形ABCD卷成以AD為母線的圓柱W的半個側(cè)面,ABCD分別為圓柱W上、下底面的直徑.

Ⅰ)證明:平面ADHF⊥平面BCHF

(Ⅱ)若PDC的中點,求三棱錐HAGP的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,,,的中點.

(1)證明:平面

(2)若點在棱上,且,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國高鐵的快速發(fā)展給群眾出行帶來巨大便利,極大促進了區(qū)域經(jīng)濟社會發(fā)展.已知某條高鐵線路通車后,發(fā)車時間間隔(單位:分鐘)滿足,經(jīng)測算,高鐵的載客量與發(fā)車時間間隔相關(guān):當時高鐵為滿載狀態(tài),載客量為人;當時,載客量會在滿載基礎(chǔ)上減少,減少的人數(shù)與成正比,且發(fā)車時間間隔為分鐘時的載客量為.記發(fā)車間隔為分鐘時,高鐵載客量為.

的表達式;

若該線路發(fā)車時間間隔為分鐘時的凈收益(元),當發(fā)車時間間隔為多少時,單位時間的凈收益最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l方程為m+2x﹣(m+1y3m70m∈R

1)求證:直線l恒過定點P,并求出定點P的坐標;

2)若直線lx軸,y軸上的截距相等,求直線l的方程.

查看答案和解析>>

同步練習冊答案