A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 求得焦點即準線方程.根據三角形的相似關系,求得2丨EF丨=丨CF丨,根據拋物線的定義,即可求得a的值.
解答 解:過A和D做AD⊥l,BG⊥l,垂足分別為D和G,準線l交x軸于E,
由拋物線的焦點($\frac{a}{4}$,0),準線方程x=-$\frac{a}{4}$,
則丨EF丨=$\frac{a}{2}$,且丨BG丨=丨BF丨,
由∠AFx=$\frac{π}{3}$,則∠FCD=$\frac{π}{6}$,
sin∠FCD=$\frac{丨BG丨}{丨BC丨}$=$\frac{丨EF丨}{丨CF丨}$=$\frac{1}{2}$,
$|{BC}|=\frac{8}{3}$,則丨BG丨=$\frac{4}{3}$,
由2丨EF丨=丨CF丨,即2×$\frac{a}{2}$=丨BC丨+丨BF丨=$\frac{8}{3}$+$\frac{4}{3}$=4,
故a=4,
故選:D.
點評 本題考查拋物線的定義,直線與拋物線的位置關系,相似三角形的性質,考查計算能力,數形結合思想,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}i$ | B. | $-\frac{1}{2}i$ | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{7}$ | B. | $\frac{2}{7}$ | C. | $\frac{3}{7}$ | D. | $\frac{4}{7}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{7}{6}$ | D. | $\frac{\sqrt{42}}{6}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com