已知平面上三點A(2,-4),B(0,6),C(-8,10),則
1
2
AC
-
1
4
BC
的坐標(biāo)為
 
考點:平面向量的坐標(biāo)運算
專題:平面向量及應(yīng)用
分析:利用有向線段的坐標(biāo)運算以及向量的運算解答.
解答: 解:由已知,A(2,-4),B(0,6),C(-8,10),
AC
=(-10,14),
BC
=(-8,4),則
1
2
AC
-
1
4
BC
=
1
2
(-10,14)-
1
4
(-8,4)=(-5,7)-(-2,1)=(-3,6);
故答案為:(-3,6);
點評:本題考查了有向線段的坐標(biāo)計算以及向量加減法的坐標(biāo)運算,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線C:y2=4x的焦點為F,過F點作直線交拋物線C于A,B兩點,則△AOB的最小面積是(  )
A、
2
B、2
C、4
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合p={x|2x2-5x-12≤0},Q={x|(x-2a)(a-x)>0},若P∩Q=∅,則實數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

|x-2|>0的解集為R.
 
(判斷對錯)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

知圓C方程:x2+y2-8x+15=0,直線l方程:y=kx-2
①若l與圓相切,求K的值;
②若l上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,求K的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是( 。
A、y=ln(x+3)
B、y=-
x+2
C、y=(
1
2
)x
D、y=
1
x
-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四棱錐V-ABCD可繞著AB任意旋轉(zhuǎn),CD∥平面α.若AB=2,VA=
5
,則正四棱錐V-ABCD在面α內(nèi)的投影面積的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
b
的夾角是45°,則向量2
a
與-
b
的夾角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是各項均為正數(shù)的等比數(shù)列,a2=2,a1•a5=16.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案