【題目】已知的頂點,邊上的中線所在直線方程為,的角平分線所在直線方程為.
(I)求頂點的坐標(biāo);
(II)求直線的方程.
【答案】(1).
(2).
【解析】分析:(I)設(shè)頂點的坐標(biāo)為;由頂點在直線上,所以
在直線上, 列方程組求解即可;(II)設(shè)頂點關(guān)于直線的對稱點為,根據(jù)中點在對稱軸上,以及直線垂直斜率之積為,列方程組求得的值,利用兩點式可得結(jié)果.
詳解:(I)設(shè)頂點的坐標(biāo)為;
因為頂點在直線上,所以
由題意知的坐標(biāo)為,
因為中點在直線上,所以,
即;
聯(lián)立方程組,解得頂點的坐標(biāo)為
(II)設(shè)頂點關(guān)于直線的對稱點為,
由于線段的中點在在直線上,得方程,
即
由直線與直線垂直,得方程,
即;
聯(lián)立方程組,得
顯然在直線上,且頂點的坐標(biāo)為,所以直線的方程為,整理得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,側(cè)面⊥底面,底面為直角梯形,//,,,,為的中點.
(Ⅰ)求證:PA//平面BEF;
(Ⅱ)若PC與AB所成角為,求的長;
(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的一個內(nèi)角為,并且三邊長構(gòu)成公差為4的等差數(shù)列,則的面積為( )
A. 15 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了月日至月日的每天晝夜溫差與實驗室每天每顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差/攝氏度 | |||||
發(fā)芽數(shù)/顆 |
該農(nóng)科所確定的研究方案是:先從這組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗.
(1)求選取的組數(shù)據(jù)恰好是不相鄰天的數(shù)據(jù)的概率;
(2)若選取的是月日與月日的兩組數(shù)據(jù),請根據(jù)月日至日的數(shù)據(jù),求出關(guān)于的線性回歸方程,由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差均不超過顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得試的線性回歸方程是否可靠?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用數(shù)學(xué)歸納法證明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12═ 時,由n=k的假設(shè)到證明n=k+1時,等式左邊應(yīng)添加的式子是( )
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)在△ABC中,角A,B,C的對邊分別為a,b,c,C=,a=5,△ABC的面積為10.
(1)求b,c的值;
(2)求cos(B-)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲船在島的正南方處,千米,甲船以每小時千米的速度向正北航行,同時乙船自出發(fā)以每小時千米的速度向北偏東的方向駛?cè),?dāng)甲,乙兩船相距最近時,它們所航行的時間是( )
A. 分鐘 B. 分鐘 C. 分鐘 D. 分鐘
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com