在△ABC中,已知內(nèi)角A=,邊BC=2,設(shè)內(nèi)角B=x,周長(zhǎng)為y
(1)求函數(shù)y=f(x)的解析式和定義域;
(2)求y的最大值.
【答案】分析:(1)由內(nèi)角A=,邊BC=2,設(shè)內(nèi)角B=x,周長(zhǎng)為y,我們結(jié)合三角形的性質(zhì),△ABC的內(nèi)角和A+B+C=π,△ABC的周長(zhǎng)y=AB+BC+AC,我們可以結(jié)合正弦定理求出函數(shù)的解析式,及自變量的取值范圍.
(2)要求三角函數(shù)的最值,我們要利用輔助角公式,將函數(shù)的解析式,化為正弦型函數(shù)的形式,再根據(jù)正弦型函數(shù)的最值的求法進(jìn)行求解.
解答:解:(1)△ABC的內(nèi)角和A+B+C=π,


應(yīng)用正弦定理,知
,

因?yàn)閥=AB+BC+AC,
所以,
(2)∵
=
所以,當(dāng),
時(shí),
y取得最大值
點(diǎn)評(píng):函數(shù)y=Asin(ωx+φ)(A>0,ω>0)中,最大值或最小值由A確定,由周期由ω決定,即要求三角函數(shù)的周期與最值一般是要將其函數(shù)的解析式化為正弦型函數(shù),再根據(jù)最大值為|A|,最小值為-|A|,周期T=進(jìn)行求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知
AB
AC
=9
,sinB=cosAsinC,又△ABC的面積等于6.
(1)求△ABC的三邊之長(zhǎng);
(2)設(shè)P是△ABC(含邊界)內(nèi)一點(diǎn),P到三邊AB、BC、CA的距離分別為d1、d2、d3,求d1+d2+d3的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知
AB
AC
=9
.sinB=cosAsinC,面積S△ABC=6,
(1)求△ABC的三邊的長(zhǎng);
(2)設(shè)P是△ABC(含邊界)內(nèi)的一點(diǎn),P到三邊AC、BC、AB的距離分別是x、y、z.
①寫出x、y、z.所滿足的等量關(guān)系;
②利用線性規(guī)劃相關(guān)知識(shí)求出x+y+z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•江蘇模擬)在△ABC中,已知
AB
AC
=9,sinB=cosAsinC,面積S△ABC=6.
(Ⅰ)求△ABC的三邊的長(zhǎng);
(Ⅱ)設(shè)P是△ABC(含邊界)內(nèi)一點(diǎn),P到三邊AC,BC,AB的距離分別為x,y和z,求x+y+z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知
AB
AC
=2
3
,∠BAC=30°.
(Ⅰ)求△ABC的面積;
(Ⅱ)設(shè)M是△ABC內(nèi)一點(diǎn),定義f(M)=(m,n,p),其中m,n,p分別是△MBC,△MCA,△MAB的面積,若f(M)=(
1
2
,x,y)
,求
1
x
+
4
y
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省福州市高三上學(xué)期期末質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:填空題

給出下列命題:

①“x=一1是“x25x60的必要不充分條件;

②在△ABC中,已知;

③在邊長(zhǎng)為1的正方形ABCD內(nèi)隨機(jī)取一點(diǎn)M,MA1的概率為于

④若命題p是::對(duì)任意的,都有sinx1,為:存在,使得sinx > 1.

其中所有真命題的序號(hào)是____

 

查看答案和解析>>

同步練習(xí)冊(cè)答案