【題目】設(shè)集合=冪函數(shù)=的圖象不過原點,則集合A的真子集的個數(shù)為

A. 1 B. 2 C. 3 D. 無數(shù)

【答案】C

【解析】由題意得

當(dāng)符合題意,

當(dāng)符合題意,

集合A的真子集的個數(shù)為3.

故選C.

點睛; 冪函數(shù),其中為常數(shù),其本質(zhì)特征是以冪的底為自變量,指數(shù)為常數(shù),這是判斷一個函數(shù)是否是冪函數(shù)的重要依據(jù)和唯一標(biāo)準(zhǔn).在上,冪函數(shù)中指數(shù)越大,函數(shù)圖象越靠近(簡記為指大圖低”),在上,冪函數(shù)中指數(shù)越大,函數(shù)圖象越遠離軸.冪函數(shù)的圖象一定會出現(xiàn)在第一象限內(nèi),一定不會出現(xiàn)在第四象限內(nèi),至于是否出現(xiàn)在第二、三象限內(nèi),要看函數(shù)的奇偶性;冪函數(shù)的圖象最多只能同時出現(xiàn)在兩個象限內(nèi);如果冪函數(shù)的圖象與坐標(biāo)軸相交,則交點一定是原點.偶函數(shù)圖象左右兩側(cè)單調(diào)性相反.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù), )的圖象關(guān)于直線對稱,且圖像上相鄰兩個最高點的距離為

(1)求函數(shù)的解析式以及它的單調(diào)遞增區(qū)間;

(2)是否存在實數(shù),滿足不等式?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:函數(shù)y=sin2x的最小正周期為 ;命題q:函數(shù)y=cosx的圖象關(guān)于直線x= 對稱.則下列判斷正確的是(
A.p為真
B.¬q為假
C.p∧q為假
D.p∨q為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E、F分別是BB1、CD的中點.
(1)求證:平面AED⊥平面A1FD1
(2)在AE上求一點M,使得A1M⊥平面ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.718 28…為自然對數(shù)的底數(shù).
(1)設(shè)g(x)是函數(shù)f(x)的導(dǎo)函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值;
(2)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點,證明:e﹣2<a<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx,g(x)=f(x)+ax2+bx,其中函數(shù)g(x)的圖象在點(1,g(1))處的切線平行于x軸.
(1)確定a與b的關(guān)系;
(2)若a≥0,試討論函數(shù)g(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)

)若函數(shù)上單調(diào)遞減,求實數(shù)的取值范圍.

)是否存在常數(shù),當(dāng)時, 在值域為區(qū)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.
(1)將直線l: (t為參數(shù))化為極坐標(biāo)方程;
(2)設(shè)P是(1)中直線l上的動點,定點A( , ),B是曲線ρ=﹣2sinθ上的動點,求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=xlnx+ax,a∈R.
(1)當(dāng)a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若對x>1,f(x)>(b+a﹣1)x﹣b恒成立,求整數(shù)b的最大值.

查看答案和解析>>

同步練習(xí)冊答案