(2011•黃岡模擬)在△ABC中,C=60°,AB=
3
,BC=
2
,那么A等于( 。
分析:由C的度數(shù)求出sinC的值,再由c和a的值,利用正弦定理求出sinA的值,由c大于a,根據(jù)大邊對大角,得到C大于A,得到A的范圍,利用特殊角的三角函數(shù)值即可求出A的度數(shù).
解答:解:∵C=60°,AB=c=
3
,BC=a=
2

∴由正弦定理
c
sinC
=
a
sinA
得:
sinA=
asinC
c
=
2
×
3
2
3
=
2
2
,
又a<c,得到A<C=60°,
則A=45°.
故選C
點評:此題考查了正弦定理,三角形的邊角關系,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•黃岡模擬)已知:如圖|
OA
|=|
OB
|=1,
OA
OB
的夾角為120°,
OC
OA
的夾角為30°,若
OC
OA
OB
(λ,μ∈R)則
λ
μ
等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•黃岡模擬)已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(
an
,an+1)(n∈N*)
在函數(shù)y=x2+1的圖象上.數(shù)列{bn}滿足b1=0,bn+1=bn+3an(n∈N*).
(I)求數(shù)列{an},{bn}的通項公式;
(II)若cn=anbncosnπ(n∈N*),求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•黃岡模擬)在△ABC所在的平面內(nèi)有一點P,如果
PA
+
PB
+
PC
=
AB
,那么△PAB的面積與△ABC的面積之比是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•黃岡模擬)分形幾何學是美籍法國數(shù)學家伯努瓦••B•曼德爾布羅特(Benoit B.Mandelbrot) 在20世紀70年代創(chuàng)立的一門新學科,它的創(chuàng)立,為解決傳統(tǒng)科學眾多領域的難題提供了全新的思路.下圖按照的分形規(guī)律生長成一個樹形圖,則第10行的空心圓點的個數(shù)是( 。

查看答案和解析>>

同步練習冊答案