15、若函數(shù)f(x,y,z)滿(mǎn)足f(a,b,c)=f(b,c,a)=f(c,a,b),則稱(chēng)函數(shù)f(x,y,z)為輪換對(duì)稱(chēng)函數(shù),如f(a,b,c)=abc是輪換對(duì)稱(chēng)函數(shù),下面命題正確的是
①②③④

①函數(shù)f(x,y,z)=x2-y2+z不是輪換對(duì)稱(chēng)函數(shù).
②函數(shù)f(x,y,z)=x2(y-z)+y2(z-x)+z2(x-y)是輪換對(duì)稱(chēng)函數(shù).
③若函數(shù)f(x,y,z)和函數(shù)g(x,y,z)都是輪換對(duì)稱(chēng)函數(shù),則函數(shù)f(x,y,z)-g(x,y,z)也是輪換對(duì)稱(chēng)函數(shù).
④若A、B、C是△ABC的三個(gè)內(nèi)角,則f(A,B,C)=2+cosC•cos(A-B)-cos2C為輪換對(duì)稱(chēng)函數(shù).
分析:首先理解輪換對(duì)稱(chēng)函數(shù)的定義,然后根據(jù)函數(shù)f(x,y,z)是否滿(mǎn)足f(a,b,c)=f(b,c,a)=f(c,a,b),對(duì)于①代入運(yùn)算可知f(x,y,z)≠f(y,z,x)故不是輪換對(duì)稱(chēng)函數(shù),對(duì)于②f(x,y,z)=f(y,z,x)=f(z,x,y),滿(mǎn)足條件,是輪換對(duì)稱(chēng)函數(shù),對(duì)于③f(x,y,z)-g(x,y,z)=f(y,z,x)-g(y,z,x)=f(z,x,y)-g(z,x,y),也滿(mǎn)足定義,是輪換對(duì)稱(chēng)函數(shù),對(duì)于④進(jìn)行化簡(jiǎn)整理可知f(A,B,C)=f(B,C,A)=f(C,A,B),滿(mǎn)足定義,故為輪換對(duì)稱(chēng)函數(shù),從而得到正確的命題.
解答:解:①函數(shù)f(x,y,z)=x2-y2+z,則f(y,z,x)=y2-z2+x,f(x,y,z)≠f(y,z,x)故不是輪換對(duì)稱(chēng)函數(shù),故正確;
②函數(shù)f(x,y,z)=x2(y-z)+y2(z-x)+z2(x-y),f(y,z,x)=y2(z-x)+z2(x-y)+x2(y-z),滿(mǎn)足f(x,y,z)=f(y,z,x)=f(z,x,y),是輪換對(duì)稱(chēng)函數(shù).故正確;
③若函數(shù)f(x,y,z)和函數(shù)g(x,y,z)都是輪換對(duì)稱(chēng)函數(shù),則f(x,y,z)=f(y,z,x)=f(z,x,y),g(x,y,z)=g(y,z,x)=g(z,x,y),從而函數(shù)f(x,y,z)-g(x,y,z)=f(y,z,x)-g(y,z,x)=f(z,x,y)-g(z,x,y),滿(mǎn)足定義,故也是輪換對(duì)稱(chēng)函數(shù).故正確;
④若A、B、C是△ABC的三個(gè)內(nèi)角,則f(A,B,C)=2+cosC•cos(A-B)-cos2C,f(B,C,A)=2+cosB•cos(B-C)-cos2A,f(C,A,B)=2+cosB•cos(C-A)-cos2B,f(A,B,C)=f(B,C,A)=f(C,A,B)為輪換對(duì)稱(chēng)函數(shù),故正確.
故答案為:①②③④.
點(diǎn)評(píng):本題考查對(duì)新概念的閱讀理解能力,以及三角函數(shù)化簡(jiǎn)與運(yùn)算能力,分析問(wèn)題的能力,屬于創(chuàng)新題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

若函數(shù)f(x,y,z)滿(mǎn)足f(a,b,c)=f(b,c,a)=f(c,a,b),則稱(chēng)函數(shù)f(x,y,z)為輪換對(duì)稱(chēng)函數(shù),如f(a,b,c)=abc是輪換對(duì)稱(chēng)函數(shù),下面命題正確的是________.
①函數(shù)f(x,y,z)=x2-y2+z不是輪換對(duì)稱(chēng)函數(shù).
②函數(shù)f(x,y,z)=x2(y-z)+y2(z-x)+z2(x-y)是輪換對(duì)稱(chēng)函數(shù).
③若函數(shù)f(x,y,z)和函數(shù)g(x,y,z)都是輪換對(duì)稱(chēng)函數(shù),則函數(shù)f(x,y,z)-g(x,y,z)也是輪換對(duì)稱(chēng)函數(shù).
④若A、B、C是△ABC的三個(gè)內(nèi)角,則f(A,B,C)=2+cosC•cos(A-B)-cos2C為輪換對(duì)稱(chēng)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若函數(shù)f(x,y,z)滿(mǎn)足f(a,b,c)=f(b,c,a)=f(c,a,b),則稱(chēng)函數(shù)f(x,y,z)為輪換對(duì)稱(chēng)函數(shù),如f(a,b,c)=abc是輪換對(duì)稱(chēng)函數(shù),下面命題正確的是______.
①函數(shù)f(x,y,z)=x2-y2+z不是輪換對(duì)稱(chēng)函數(shù).
②函數(shù)f(x,y,z)=x2(y-z)+y2(z-x)+z2(x-y)是輪換對(duì)稱(chēng)函數(shù).
③若函數(shù)f(x,y,z)和函數(shù)g(x,y,z)都是輪換對(duì)稱(chēng)函數(shù),則函數(shù)f(x,y,z)-g(x,y,z)也是輪換對(duì)稱(chēng)函數(shù).
④若A、B、C是△ABC的三個(gè)內(nèi)角,則f(A,B,C)=2+cosC•cos(A-B)-cos2C為輪換對(duì)稱(chēng)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省龍巖市高三(上)期末質(zhì)量檢查一級(jí)達(dá)標(biāo)數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

若函數(shù)f(x,y,z)滿(mǎn)足f(a,b,c)=f(b,c,a)=f(c,a,b),則稱(chēng)函數(shù)f(x,y,z)為輪換對(duì)稱(chēng)函數(shù),如f(a,b,c)=abc是輪換對(duì)稱(chēng)函數(shù),下面命題正確的是   
①函數(shù)f(x,y,z)=x2-y2+z不是輪換對(duì)稱(chēng)函數(shù).
②函數(shù)f(x,y,z)=x2(y-z)+y2(z-x)+z2(x-y)是輪換對(duì)稱(chēng)函數(shù).
③若函數(shù)f(x,y,z)和函數(shù)g(x,y,z)都是輪換對(duì)稱(chēng)函數(shù),則函數(shù)f(x,y,z)-g(x,y,z)也是輪換對(duì)稱(chēng)函數(shù).
④若A、B、C是△ABC的三個(gè)內(nèi)角,則f(A,B,C)=2+cosC•cos(A-B)-cos2C為輪換對(duì)稱(chēng)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年安徽省阜陽(yáng)市太和縣第二職業(yè)高級(jí)中學(xué)高三質(zhì)量檢測(cè)數(shù)學(xué)試卷10(理科)(解析版) 題型:解答題

若函數(shù)f(x,y,z)滿(mǎn)足f(a,b,c)=f(b,c,a)=f(c,a,b),則稱(chēng)函數(shù)f(x,y,z)為輪換對(duì)稱(chēng)函數(shù),如f(a,b,c)=abc是輪換對(duì)稱(chēng)函數(shù),下面命題正確的是   
①函數(shù)f(x,y,z)=x2-y2+z不是輪換對(duì)稱(chēng)函數(shù).
②函數(shù)f(x,y,z)=x2(y-z)+y2(z-x)+z2(x-y)是輪換對(duì)稱(chēng)函數(shù).
③若函數(shù)f(x,y,z)和函數(shù)g(x,y,z)都是輪換對(duì)稱(chēng)函數(shù),則函數(shù)f(x,y,z)-g(x,y,z)也是輪換對(duì)稱(chēng)函數(shù).
④若A、B、C是△ABC的三個(gè)內(nèi)角,則f(A,B,C)=2+cosC•cos(A-B)-cos2C為輪換對(duì)稱(chēng)函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案