方程loga(x-ak)=loga2(x2-a2)有解時(shí)k的取值范圍( 。
A.(-∞,-1)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(0,1)D.(-∞,0)∪(0,+∞)
由對(duì)數(shù)性質(zhì)知,原方程的解x應(yīng)滿足
(x-ak)2=x2-a2
x-ak>0
x2-a2>0③

若①、②同時(shí)成立,則③必成立,
故只需解
(x-ak)2=x2-a2
x-ak>0

由①可得2kxkx=aa(1+k2),④
當(dāng)k=0時(shí),④無(wú)解;當(dāng)k≠0時(shí),④的解是x=
a(1+k2)
2k
,代入②得
1+k2
2k
>kk.
若k<0,則k2>1,所以k<-1;若k>0,則k2<1,所以0<kk<1.
綜上,當(dāng)k∈(-∞,-1)∪(0,1)時(shí),原方程有解.
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122456863204.gif" style="vertical-align:middle;" />,則的范圍為_(kāi)_________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)f(x)=
lgx
+log2(3-2x)
的定義域是( 。
A.[0,
3
2
)
B.[0,
3
2
]
C.[1,
3
2
)
D.[1,
3
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)a=log
1
3
2,b=log
1
2
1
3
,c=(
1
2
0.3,則( 。
A.a(chǎn)<b<cB.a(chǎn)<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

loga
1
2
<logb
1
2
<0
,則a,b滿足的關(guān)系是( 。
A.1<a<bB.1<b<aC.0<a<b<1D.0<b<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知方程lg2x+(lg2+lg3)lgx+lg2•lg3=0的兩根為x1,x2,則x1•x2=( 。
A.-lg6B.lg2•lg3C.6D.
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知0<a<1,,則
A.1<n<mB.1<m<nC.m<n<1D.n<m<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

實(shí)數(shù)滿足的值為                                           (   )
A.8B.-8C.8或-8D.與無(wú)關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù),當(dāng)時(shí)的值域?yàn)?     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案