(本題14分)某校高二年級研究性學習小組,為了分析2011年我國宏觀經(jīng)濟形勢,上網(wǎng)查閱了2010年和2011年2-6月我國CPI同比(即當年某月與前一年同月相比)的增長數(shù)據(jù)(見下表),但2011年4,5,6三個月的數(shù)據(jù)(分別記為x,y,z)沒有查到.有的同學清楚記得2011年2,3,4,5,6五個月的CPI數(shù)據(jù)成等差數(shù)列.
(1)求x,y,z的值;
(2)求2011年2-6月我國CPI的數(shù)據(jù)的方差;
(3)一般認為,某月CPI達到或超過3個百分點就已經(jīng)通貨膨脹,而達到或超過5個百分點則嚴重通貨膨脹.現(xiàn)隨機地從上表2010年的五個月和2011年的五個月的數(shù)據(jù)中各抽取一個數(shù)據(jù),求相同月份2010年通貨膨脹,并且2011年嚴重通貨膨脹的概率.
附表:我國2010年和2011年2~6月的CPI數(shù)據(jù)(單位:百分點.注:1個百分點=1%)
年份 |
二月 |
三月 |
四月 |
五月 |
六月 |
2010 |
2.7 |
2.4 |
2.8 |
3.1 |
2.9 |
2011 |
4.9 |
5.0 |
x |
y |
z |
(1)x=5.1,y=5.2,z=5.3;(2)其平均數(shù)為5.1,其方差為0.01;
(3)相同月份2010年通貨膨脹,并且2011年嚴重通貨膨脹的概率為0.16.
【解析】本題考查古典概型的計算,涉及等差數(shù)列的性質(zhì)、平均數(shù)、方差的計算與列舉法的應用,是基礎題;注意在列舉時做到不重不漏,同時要正確計算
(1)根據(jù)題意,結合等差數(shù)列的性質(zhì),可得該數(shù)列的公差為0.1,進而可得x、y、z的值;
(2)由(1)的結論可得2011年中2-6月全部數(shù)據(jù),先計算出5個數(shù)據(jù)的平均數(shù),進而由方差公式計算可得答案;
(3)根據(jù)題意,用m表示2010年的數(shù)據(jù),n表示2011年的數(shù)據(jù),則(m,n)表示隨機地從2010年的五個月和2011年的五個月的數(shù)據(jù)中各抽取一個數(shù)據(jù)的基本事件,由列舉法可得抽取數(shù)據(jù)的情況,分析可得事件“相同月份2010年通貨膨脹,并且2011年嚴重通貨膨脹”包含的基本事件的數(shù)目,由古典概型公式,計算可得答案.
解:
(1)依題意得4.9,5.0,x,y,z成等差數(shù)列,所以公差d=5.0-4.9=0.1,
故x=5.0+0.1=5.1,y=x+0.1=5.2,z=y+0.1=5.3;
(2)由(1)知2011年2~6月我國CPI的數(shù)據(jù)為:4.9,5.0,5.1,5.2,5.3
其平均數(shù)為:x=(4.9+5.0+5.1+5.2+5.3)=5.1,其方差為:s2=[(4.9-5.1)2+(5.0-5.1)2+(5.1-5.1)2+(5.2-5.1)2+(5.3-5.1)2]=0.01;
(3)根據(jù)題意,用m表示2010年的數(shù)據(jù),n表示2011年的數(shù)據(jù),則(m,n)表示隨機地從2010年的五個月和2011年的五個月的數(shù)據(jù)中各抽取一個數(shù)據(jù)的基本事件,
則所有基本事件有:
(2.7,4.9),(2.7,5.0),(2.7,5.1),(2.7,5.2),(2.7,5.3),
(2.4,4.9),(2.4,5.0),(2.4,5.1),(2.4,5.2),(2.4,5.3),
(2.8,4.9),(2.8,5.0),(2.8,5.1),(2.8,5.2),(2.8,5.3),
(3.1,4.9),(3.1,5.0),(3.1,5.1),(3.1,5.2),(3.1,5.3),
(2.9,4.9),(2.9,5.0),(2.9,5.1),(2.9,5.2),(2.9,5.3);共25個基本事件;
其中滿足相同月份2010年通貨膨脹,并且2011年嚴重通貨膨脹的基本事件有:(3.1,5.0),(3.1,5.1),(3.1,5.2),(3.1,5.3),有4個基本事件;
所以P==0.16,即相同月份2010年通貨膨脹,并且2011年嚴重通貨膨脹的概率為0.16.
科目:高中數(shù)學 來源:2010年廣東省高三第一次月考文科數(shù)學卷 題型:解答題
(本題滿分14分)
某校高三的某次數(shù)學測試中,對其中100名學生的成績進行分析,按成績分組,得到的頻率分布表如下:
組號 |
分組 |
頻數(shù) |
頻率 |
第1組 |
15 |
① |
|
第2組 |
② |
0.35 |
|
第3組 |
20 |
0.20 |
|
第4組 |
20 |
0.20 |
|
第5組 |
10 |
0.10 |
|
合計 |
|
100 |
1.00 |
(1)求出頻率分布表中①、②位置相應的數(shù)據(jù);
(2)為了選拔出最優(yōu)秀的學生參加即將舉行的數(shù)學競賽,學校決定在成績較高的第3、4、5組中分層抽樣取5名學生,則第4、5組每組各抽取多少名學生?
(3)為了了解學生的學習情況,學校又在這5名學生當中隨機抽取2名進行訪談,求第4組中至少有一名學生被抽到的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com