【題目】挑選空間飛行員可以說是“萬(wàn)里挑一”,要想通過需要五關(guān):目測(cè)、初檢、復(fù)檢、文考(文化考試)、政審.若某校甲、乙、丙三位同學(xué)都順利通過了前兩關(guān),根據(jù)分析甲、乙、丙三位同學(xué)通過復(fù)檢關(guān)的概率分別是0.5、0.6、0.75,能通過文考關(guān)的概率分別是0.6、0.5、0.4,由于他們平時(shí)表現(xiàn)較好,都能通過政審關(guān),若后三關(guān)之間通過與否沒有影響.
(1)求甲被錄取成為空軍飛行員的概率;
(2)求甲、乙、丙三位同學(xué)中恰好有一個(gè)人通過復(fù)檢的概率;
(3)設(shè)只要通過后三關(guān)就可以被錄取,求錄取人數(shù)的分布列.
【答案】(1); (2); (3)分布列見解析.
【解析】
設(shè)甲乙丙三位同學(xué)分別通過復(fù)檢為事件,甲乙丙同學(xué)通過文考為事件,
可得,,
(1)根據(jù)相互獨(dú)立事件的概率計(jì)算公式,即可求得甲被錄取成為空軍飛行員的概率;
(2)根據(jù)題意,得到甲乙丙三位同學(xué)分別通過復(fù)檢的事件,
利用相互獨(dú)立事件的概率計(jì)算公式,即可求解;
(3)分別求得甲、乙、丙同學(xué)被錄取的概率為,找出隨機(jī)變量可能取值為,
求得相應(yīng)的概率,即可得到隨機(jī)變量的分布列.
設(shè)甲乙丙三位同學(xué)分別通過復(fù)檢為事件,甲乙丙同學(xué)通過文考為事件,
可得,,
(1)由題意,可得甲被錄取成為空軍飛行員的概率為:
.
(2)由題意,甲乙丙三位同學(xué)分別通過復(fù)檢,即為事件,
利用獨(dú)立事件的概率計(jì)算公式,可得甲、乙、丙三位同學(xué)中恰好有一個(gè)人通過復(fù)檢的概率為:
.
(3)由題意,甲同學(xué)被錄取的概率為,
乙同學(xué)被錄取的概率為,
丙同學(xué)被錄取的概率為,
可以看作3次的獨(dú)立重復(fù)試驗(yàn),其中隨機(jī)變量可能取值為,
則,,
,,
所以隨機(jī)變量的分布列為:
0 | 1 | 2 | 3 | |
|
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)據(jù)是鄭州市普通職工個(gè)人的年收入,若這個(gè)數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上世界首富的年收入,則這個(gè)數(shù)據(jù)中,下列說法正確的是( )
A.年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
B.年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大
C.年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
D.年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣ax2+bx+c(a,b,c∈R).
(1)若函數(shù)f(x)在x=﹣1和x=3處取得極值,試求a,b的值;
(2)在(1)的條件下,當(dāng)x∈[﹣2,6]時(shí),f(x)<2|c|恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某投資公司計(jì)劃在甲、乙兩個(gè)互聯(lián)網(wǎng)創(chuàng)新項(xiàng)目上共投資1200萬(wàn)元,每個(gè)項(xiàng)目至少要投資300萬(wàn)元.根據(jù)市場(chǎng)分析預(yù)測(cè):甲項(xiàng)目的收益與投入滿足,乙項(xiàng)目的收益與投入滿足.設(shè)甲項(xiàng)目的投入為.
(1)求兩個(gè)項(xiàng)目的總收益關(guān)于的函數(shù).
(2)如何安排甲、乙兩個(gè)項(xiàng)目的投資,才能使總收益最大?最大總收益為多少?(注:收益與投入的單位都為“萬(wàn)元”)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)是偶函數(shù).求的值,并在坐標(biāo)系中畫出的大致圖象;
(2)若當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形, , , , 與均為等邊三角形,點(diǎn)為的中點(diǎn).
(1)證明:平面平面;
(2)試問在線段上是否存在點(diǎn),使二面角的余弦值為,若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)國(guó)家統(tǒng)計(jì)局發(fā)布的數(shù)據(jù),2019年11月全國(guó)(居民消費(fèi)價(jià)格指數(shù)),同比上漲,上漲的主要因素是豬肉價(jià)格的上漲,豬肉加上其他畜肉影響上漲3.27個(gè)百分點(diǎn).下圖是2019年11月一籃子商品權(quán)重,根據(jù)該圖,下列四個(gè)結(jié)論正確的有______.
①一籃子商品中權(quán)重最大的是居住
②一籃子商品中吃穿住所占權(quán)重超過
③豬肉在一籃子商品中權(quán)重為
④豬肉與其他禽肉在一籃子商品中權(quán)重約為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象過點(diǎn),且在點(diǎn)處的切線斜率為8.
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)求函數(shù)在區(qū)間上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為1,P,Q分別是線段和上的動(dòng)點(diǎn),且滿足,則下列命題錯(cuò)誤的是( )
A.存在P,Q的某一位置,使
B.的面積為定值
C.當(dāng)時(shí),直線與是異面直線
D.無(wú)論P,Q運(yùn)動(dòng)到任何位置,均有
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com