【題目】求經(jīng)過兩直線3x﹣2y+1=0和x+3y+4=0的交點,且垂直于直線x+3y+4=0的直線方程.
【答案】解法一:設(shè)所求直線方程為3x﹣2y+1+λ(x+3y+4)=0, 即(3+λ)x+(3λ﹣2)y+(1+4λ)=0;
由所求直線垂直于直線x+3y+4=0,得
﹣ (﹣ )=﹣1,
解得λ= ;
故所求直線方程是3x﹣y+2=0.
解法二:設(shè)所求直線方程為3x﹣y+m=0,
由 ,解得 ,
即兩已知直線的交點為(﹣1,﹣1);
又3x﹣y+m=0過點(﹣1,﹣1),
故﹣3+1+m=0,解得m=2;
故所求直線方程為3x﹣y+2=0
【解析】解法一:根據(jù)直線過兩條直線的交點,設(shè)出所求直線方程,再利用兩條直線互相垂直的關(guān)系,即可求出所求的直線方程; 解法二:根據(jù)兩條直線互相垂直設(shè)出所求的直線方程,求出兩已知直線的交點坐標(biāo),代入所設(shè)方程,即可求出所求的直線方程.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 滿足Sn= an﹣n(t>0且t≠1,n∈N*)
(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項公式(用t,n表示)
(2)當(dāng)t=2時,令cn= ,證明 ≤c1+c2+c3+…+cn<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知梯形CEPD如圖(1)所示,其中PD=8,CE=6,A為線段PD的中點,四邊形ABCD為正方形,現(xiàn)沿AB進(jìn)行折疊,使得平面PABE⊥平面ABCD,得到如圖(2)所示的幾何體.已知當(dāng)點F滿足 = (0<λ<1)時,平面DEF⊥平面PCE,則λ的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣a|+a.
(1)當(dāng)a=2時,求不等式f(x)≤6的解集;
(2)設(shè)函數(shù)g(x)=|2x﹣1|,當(dāng)x∈R時,f(x)+g(x)≥3,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a1=2,an+1=4an﹣3n+1,n∈N*(Ⅰ)證明:數(shù)列{an﹣n}是等比數(shù)列
(Ⅱ)記數(shù)列{an}的前n項和為Sn , 求證:Sn+1≤4Sn , 對任意n∈N*成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓與雙曲線有相同的焦點F1(﹣c,0),F(xiàn)2(c,0),橢圓的一個短軸端點為B,直線F1B與雙曲線的一條漸近線平行,若橢圓與雙曲線的離心率分別為e1 , e2 , 則3e12+e22的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且滿足asinA﹣csinC=(a﹣b)sinB.
(1)求角C的大小;
(2)若邊長 ,求△ABC的周長最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)f(x)的對稱中心和函數(shù)的單調(diào)遞增區(qū)間;
(2)已知△ABC中,角A,B,C的對邊分別為a,b,c,若 ,求AB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長都相等的四面體P-ABC中,D、E、F分別是AB、BC、CA的中點,則下面四個結(jié)論中不成立的是 ( )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDF⊥平面ABC
D.平面PAE⊥平面ABC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com