已知數(shù)列an=2n-1(n∈N*),把數(shù)列{an}的各項排成如圖所示的三角形數(shù)陣,記(m,n)表示該數(shù)陣中第m行中從左到右的第n個數(shù),則S(10,6)對應于數(shù)陣中的數(shù)是   
【答案】分析:觀察發(fā)現(xiàn):數(shù)陣由連續(xù)的項的排列構(gòu)成,且第m行有m個數(shù),根據(jù)等差數(shù)列求和公式,得出S(10,6)是數(shù)陣中第幾個數(shù)字,即時數(shù)列{an}中的相序,再利用通項公式求出.
解答:解:由數(shù)陣可知,S(10,6)是數(shù)陣當中第1+2+3+…+9+6=51個數(shù)據(jù),也是數(shù)列{an}中的第51項,
而a51=2×51-1=101,所以S(10,6)對應于數(shù)陣中的數(shù)是101
故答案為:101
點評:本題是規(guī)律探究型題目,此題要發(fā)現(xiàn)各行的數(shù)字個數(shù)和行數(shù)的關(guān)系,從而進行分析計算.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列an=2n-1,數(shù)列{bn}的前n項和為Tn,滿足Tn=1-bn
(I)求{bn}的通項公式;
(II)在{an}中是否存在使得
1an+9
是{bn}中的項,若存在,請寫出滿足題意的一項(不要求寫出所有的項);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•濰坊二模)已知數(shù)列an=2n-1(n∈N*),把數(shù)列{an}的各項排成如圖所示的三角形數(shù)陣,記(m,n)表示該數(shù)陣中第m行中從左到右的第n個數(shù),則S(10,6)對應于數(shù)陣中的數(shù)是
101
101

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列an=2n,前n項和為Sn,若數(shù)列{
1
Sn
}
的前n項和為Tn,則T2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•溫州一模)已知數(shù)列an=2n-1,數(shù)列{bn}的前n項和為Tn,滿足Tn=1-bn
(I)求{bn}的通項公式;
(II)試寫出一個m,使得
1am+9
是{bn}中的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列an=-2n+12,Sn為其前n項和,則Sn取最大值時,n值為( 。
A、7或6B、5或6C、5D、6

查看答案和解析>>

同步練習冊答案