分析 先將f(x)的各極值與其端點(diǎn)的函數(shù)值比較,其中最大的一個(gè)就是最大值,最小的一個(gè)就是最小值,再根據(jù)條件求出m的值,最小值即可求得.
解答 解:∵f(x)=-x3+3x2+9x+m(m為常數(shù))
∴f′(x)=-3x2+6x+9
令f′(x)=-3x2+6x+9=0,解得x=-1或3(舍去)
當(dāng)-2<x<-1時(shí),f'(x)<0,
當(dāng)-1<x<2時(shí),f'(x)>0
∴當(dāng)x=-1時(shí)取最小值,而f(2)=22+m>f(-2)=2+m,
即最大值為22+m=20,∴m=-2,
故答案為:-2.
點(diǎn)評(píng) 本題主要考查了利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,是高考中?嫉闹R(shí)點(diǎn),解題的關(guān)鍵是利用導(dǎo)數(shù)工具,確定函數(shù)的最值,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | c<a<b | B. | b<c<a | C. | a<c<b | D. | c<b<a |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com