1.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),$f(x)=1-{(\frac{1}{2})^x}$,則不等式$f(x)<\frac{1}{2}$的解集是(  )
A.(-∞,1)B.(-∞,-1)C.(1,+∞)D.(-1,∞)

分析 由題意,函數(shù)f(x)是定義在R上的奇函數(shù)且單調(diào)遞增,利用f(1)=$\frac{1}{2}$,$f(x)<\frac{1}{2}$,即可得出結(jié)論.

解答 解:由題意,函數(shù)f(x)是定義在R上的奇函數(shù)且單調(diào)遞增,
∵f(1)=$\frac{1}{2}$,$f(x)<\frac{1}{2}$,
∴f(x)<f(1),
∴x<1,
故選A.

點(diǎn)評(píng) 本題考查了奇函數(shù)的對稱性、單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.打開“幾何畫板”軟件進(jìn)行如下操作:
①用畫圖工具在工作區(qū)畫一個(gè)大小適中的圓C;
②用取點(diǎn)工具分別在圓C上和圓C外各取一個(gè)點(diǎn)A,B;
③用構(gòu)造菜單下對應(yīng)命令作出線段AB的垂直平分線l;
④作出直線AC.
設(shè)直線AC與直線l相交于點(diǎn)P,當(dāng)點(diǎn)B為定點(diǎn),點(diǎn)A在圓C上運(yùn)動(dòng)時(shí),點(diǎn)P的軌跡是( 。
A.B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)$f(x)=sin(\frac{7π}{6}-2x)+2{cos^2}x-1$
(Ⅰ)求函數(shù)f(x)在區(qū)間$[-\frac{π}{2},\frac{π}{12}]$上的最大值和最小值;
(Ⅱ)在△ABC中,三內(nèi)角A,B,C的對邊分別為a,b,c,已知函數(shù)f(x)的圖象經(jīng)過點(diǎn)$(A,\frac{1}{2})$,b、a、c成等差數(shù)列,且△ABC的面積為$\frac{{9\sqrt{3}}}{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.f(x)=x3-ax2+a(a>0)有且只有一個(gè)零點(diǎn),則a的范圍為( 。
A.$(0,\frac{3}{2})$B.$(0,\frac{{3\sqrt{3}}}{2})$C.$(0,\frac{{\sqrt{3}}}{2})$D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.圓心坐標(biāo)為(-1,-1)且過原點(diǎn)的圓的方程是( 。
A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=$\sqrt{6+x-{x^2}}$的單調(diào)減區(qū)間是[$\frac{1}{2}$,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直線4x+y=4,mx+y=0和2x-3my=4不能構(gòu)成三角形,則m的個(gè)數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$|\overrightarrow b|=5$,且$\overrightarrow a•\overrightarrow b=12$,則$\overrightarrow a$在$\overrightarrow b$方向上的投影為( 。
A.$\frac{12}{5}$B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.到直線2x+y+1=0的距離為$\frac{{\sqrt{5}}}{5}$的點(diǎn)的集合為( 。
A.直線2x+y-2=0B.直線2x+y=0
C.直線2x+y=0或2x+y-2=0D.直線2x+y=0或直線2x+2y+2=0

查看答案和解析>>

同步練習(xí)冊答案