【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖,其中成績分組區(qū)間如下:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 |
(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生期中考試數(shù)學(xué)成績的平均分;
(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學(xué)生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數(shù)不低于90分的概率?
【答案】(1)(2)(3)
【解析】
試題分析:(1)根據(jù)頻率分布直方圖中小長方形面積等于對應(yīng)概率,即所有小長方形面積和為1得,解得(2)根據(jù)組中值得平均數(shù)(3)由分層抽樣法得第3、4、5組中各抽取3、2、1人,利用枚舉法得隨機抽取2名,共有15個基本事件,其中恰有1人分數(shù)不低于90分的基本事件有5個,因此概率為
試題解析:(1)由題意得:,即
(2)數(shù)學(xué)成績的平均分為:
(3)第3、4、5組中共有學(xué)生人數(shù)分別為30、20、 10人,用分層抽樣法抽6人,即在第3、4、5組中各抽取3、2、1人,設(shè)6名學(xué)生為.隨機抽2人,共有共15個基本事件,其中恰有1人分數(shù)不低于90分的基本事件有5個,記其中恰有1人分數(shù)不低于90分為事件,∴
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,(且).
(1)判斷的奇偶性并用定義證明;
(2)判斷的單調(diào)性并有合理說明;
(3)當時,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各組幾何體中,都是多面體的一組是( )
A. 三棱柱、四棱臺、球、圓錐 B. 三棱柱、四棱臺、正方體、圓臺
C. 三棱柱、四棱臺、正方體、六棱錐 D. 圓錐、圓臺、球、半球
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,求在區(qū)間上的最大值和最小值;
(2)若在區(qū)間上, 函數(shù)的圖象恒在直線下方, 求的取值范圍;
(3)設(shè).當時, 若對于任意,存在,使,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與圓:關(guān)于直線對稱,且點在圓上.
(1)判斷圓與圓的位置關(guān)系;
(2)設(shè)為圓上任意一點,,,三點不共線,為的平分線,且交于. 求證:與的面積之比為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于四種命題的真假判斷正確的是( )
A. 原命題與其逆否命題的真值相同 B. 原命題與其逆命題的真值相同
C. 原命題與其否命題的真值相同 D. 原命題的逆命題與否命題的真值相反
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,直線,設(shè)圓的半徑為,圓心在上.
(Ⅰ)若圓心也在直線上,過點作圓的切線,求切線的方程;
(Ⅱ)若圓上存在點,使,求圓心的橫坐標的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com