已知函數(shù),若直線對(duì)任意的都不是曲線的切線,則的取值范圍是         

試題分析:首先分析對(duì)任意的m直線都不是曲線y=f(x)的切線的含義,即可求出函數(shù)的導(dǎo)函數(shù),使直線與其不相交即可.解:,則f(x)=3x2-3a,若直線任意的m∈R都不是曲線y=f(x)的切線,則直線的斜率為-1,f(x)=3x2-3a與直線沒有交點(diǎn),又拋物線開口向上則必在直線上面,即最小值大于直線斜率,則當(dāng)x=0時(shí)取最大值,-3a>-1,則a的取值范圍為,故答案為
點(diǎn)評(píng):此題只要考查函數(shù)與方程的綜合應(yīng)用,以及函數(shù)導(dǎo)函數(shù)的計(jì)算,屬于綜合性問題,計(jì)算量小但有一定的難度,屬于中等題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

定義:已知函數(shù)f(x)與g(x),若存在一條直線y="kx" +b,使得對(duì)公共定義域內(nèi)的任意實(shí)數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號(hào)在公共點(diǎn)處成立,則稱直線y="kx" +b為曲線f(x)與g(x)的“左同旁切線”.已知
(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設(shè)P(是函數(shù) f(x)圖象上任意兩點(diǎn),且0<x1<x2,若存在實(shí)數(shù)x3>0,使得.請(qǐng)結(jié)合(I)中的結(jié)論證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

“函數(shù)”是“可導(dǎo)函數(shù)在點(diǎn)處取到極值”的  條件。 (    )
A.充分不必要B.必要不充分 C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)).
(1)當(dāng)時(shí),求證:上單調(diào)遞增;
(2)當(dāng)時(shí),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(Ⅰ)當(dāng)時(shí),求曲線處的切線與坐標(biāo)軸圍成的三角形的面積;
(Ⅱ)若函數(shù)存在一個(gè)極大值和一個(gè)極小值,且極大值與極小值的積為,求
值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)在一點(diǎn)的導(dǎo)數(shù)值為是函數(shù)在這點(diǎn)取極值的(    )
A.充分條件B.必要條件C.必要非充分條件 D.充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若曲線的一條切線與直線垂直,則的方程為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù),則導(dǎo)數(shù)=(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在R上的可導(dǎo)函數(shù)f(x),已知y=e f ′(x)的圖象如下圖所示,則y=f(x)的增區(qū)間是
 
A.(-∞,1)B.(-∞,2)C.(0,1)D.(1,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案