1.已知數(shù)列{an}的前n項(xiàng)和Sn=n2+2n-1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2${\;}^{{a}_{n}}$+2n,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)分n=1時,和n≥2時根據(jù)數(shù)列的求和公式和遞推公式即可求出答案,
(2)根據(jù)分組求和和等差數(shù)列和等比數(shù)列的求和公式即可求出.

解答 解:(1)∵數(shù)列{an}的前n項(xiàng)的和Sn=n2+2n-1,
∴n=1時,a1=S1=1+2-1=2,
當(dāng)n≥2時,an=Sn-Sn-1
=(n2+2n-1)-[(n-1)2+2(n-1)-1]
=2n+1,
n=1時,2n+1=3≠a1,
∴an=$\left\{\begin{array}{l}{2,n=1}\\{2n+1,n≥2}\end{array}\right.$,
(2)當(dāng)n=1時,b1=22+2=6,
當(dāng)n≥2時,bn=2${\;}^{{a}_{n}}$+2n=22n+1+2n,
當(dāng)n=1時,T1=6,
當(dāng)n≥2時,
∴Tn=6+(25+27+…+22n+1)+2(2+3+4+…+n)
=-4+(23+25+27+…+22n+1)+2(1+2+3+4+…+n)
=-4+$\frac{{2}^{3}(1-{2}^{2n})}{1-4}$+2•$\frac{n(n+1)}{2}$=$\frac{1}{3}$×22n+3+n2+n-$\frac{20}{3}$,
∴Tn=$\left\{\begin{array}{l}{6,n=1}\\{\frac{1}{3}×{2}^{2n+3}+{n}^{2}+n-\frac{20}{3},n≥2}\end{array}\right.$

點(diǎn)評 本題考查的是數(shù)列通項(xiàng)和數(shù)列求和問題.在解答時中充分體現(xiàn)了特值的思想、分類討論的思想以及分組求和.值得同學(xué)體會和反思.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R),對任意實(shí)數(shù)x,不等式$2x≤f(x)≤\frac{1}{2}{(x+1)^2}$恒成立,
(Ⅰ)求f(-1)的取值范圍;
(Ⅱ)對任意x1,x2∈[-3,-1],恒有|f(x1)-f(x2)|≤1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若△ABC的三邊分別為a,b,c,且圓x2+y2=1與直線ax+by+c=0沒有公共點(diǎn),則△ABC一定是(  )
A.鈍角三角形B.銳角三角形C.直角三角形D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=2sinπx與函數(shù)$y=\frac{1}{1-x}$的圖象在區(qū)間[-2,4]上交點(diǎn)的橫坐標(biāo)依次分別為x1,x2,…,xn,則$\sum_{i=1}^{n}$xi=( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線交x軸于點(diǎn)H,過H作直線l交拋物線于A,B兩點(diǎn),且|BF|=2|AF|.
(Ⅰ)求直線AB的斜率;
(Ⅱ)若△ABF的面積為$\sqrt{2}$,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某商場計(jì)劃銷售某種產(chǎn)品,現(xiàn)邀請生產(chǎn)該產(chǎn)品的甲、乙兩個廠家進(jìn)場試銷10天.兩個廠家提供的返利方案如下:甲廠家每天固定返利70元,且每賣出一件產(chǎn)品廠家再返利2元;乙廠家無固定返利,賣出40件以內(nèi)(含40件)的產(chǎn)品,每件產(chǎn)品廠家返利4元,超出40件的部分每件返利6元.經(jīng)統(tǒng)計(jì),兩個廠家的試銷情況莖葉圖如下:
8998993899
201042111010
(Ⅰ)現(xiàn)從甲廠家試銷的10天中抽取兩天,求這兩天的銷售量都大于40的概率;
(Ⅱ)若將頻率視作概率,回答以下問題:
(。┯浺覐S家的日返利額為X(單位:元),求X的分布列和數(shù)學(xué)期望;
(ⅱ)商場擬在甲、乙兩個廠家中選擇一家長期銷售,如果僅從日返利額的角度考慮,請利用所學(xué)的統(tǒng)計(jì)學(xué)知識為商場作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題p:?x∈R,x2-2xsinθ+1≥0;命題q:?α,β∈R,sin(α+β)≤sinα+sinβ,則下列命題中的真命題為( 。
A.(¬p)∧qB.¬(p∧q)C.(¬p)∨qD.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若S2n=4(a1+a3+…+a2n-1),a1•a2•a3=27,則log3a1+log3a2+…+log3a20=( 。
A.210B.190C.220D.242

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>b>0)$的左,右焦點(diǎn)分別為F1,F(xiàn)2,雙曲線上一點(diǎn)P滿足PF2⊥x軸,若|F1F2|=12,|PF2|=5,則該雙曲線的離心率為(  )
A.$\frac{13}{12}$B.$\frac{12}{5}$C.$\frac{3}{2}$D.3

查看答案和解析>>

同步練習(xí)冊答案