以A表示值域?yàn)镽的函數(shù)組成的集合,B表示具有如下性質(zhì)的函數(shù)φ(x)組成的集合:對于函數(shù)φ(x),存在一個正數(shù)M,使得函數(shù)φ(x)的值域包含于區(qū)間[-M,M].例如,當(dāng)φ1(x)=x3,φ2(x)=sinx時,φ1(x)∈A,φ2(x)∈B.現(xiàn)有如下命題:
①設(shè)函數(shù)f(x)的定義域?yàn)镈,則“f(x)∈A”的充要條件是“?b∈R,?a∈D,f(a)=b”;
②函數(shù)f(x)∈B的充要條件是f(x)有最大值和最小值;
③若函數(shù)f(x),g(x)的定義域相同,且f(x)∈A,g(x)∈B,則f(x)+g(x)∉B.
④若函數(shù)f(x)=aln(x+2)+
x
x2+1
(x>-2,a∈R)有最大值,則f(x)∈B.
其中的真命題有
 
.(寫出所有真命題的序號)
考點(diǎn):命題的真假判斷與應(yīng)用,充要條件,全稱命題,特稱命題,函數(shù)的值域
專題:新定義,極限思想,函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用,簡易邏輯
分析:根據(jù)題中的新定義,結(jié)合函數(shù)值域的概念,可判斷出命題①②③是否正確,再利用導(dǎo)數(shù)研究命題④中函數(shù)的值域,可得到其真假情況,從而得到本題的結(jié)論.
解答: 解:(1)對于命題①,若對任意的b∈R,都?a∈D使得f(a)=b,則f(x)的值域必為R.反之,f(x)的值域?yàn)镽,則對任意的b∈R,都?a∈D使得f(a)=b,故①是真命題;
   (2)對于命題②,若函數(shù)f(x)∈B,即存在一個正數(shù)M,使得函數(shù)f(x)的值域包含于區(qū)間[-M,M].
∴-M≤f(x)≤M.例如:函數(shù)f(x)滿足-2<f(x)<5,則有-5≤f(x)≤5,此時,f(x)無最大值,無最小值,故②是假命題;
   (3)對于命題③,若函數(shù)f(x),g(x)的定義域相同,且f(x)∈A,g(x)∈B,則f(x)值域?yàn)镽,f(x)∈(-∞,+∞),并且存在一個正數(shù)M,使得-M≤g(x)≤M.故f(x)+g(x)∈(-∞,+∞).
則f(x)+g(x)∉B,故③是真命題;
   (4)對于命題④,∵-
1
2
x
x2+1
1
2
,
當(dāng)a>0或a<0時,alnx∈(-∞,+∞),f(x)均無最大值,若要使f(x)有最大值,則a=0,此時f(x)=
x
x2+1
,f(x)∈B,故④是真命題.
故答案為①③④.
點(diǎn)評:本題考查了函數(shù)值域的概念、基本不等式、充要條件,還考查了新定義概念的應(yīng)用和極限思想.本題計(jì)算量較大,也有一定的思維難度,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

乒乓球臺面被網(wǎng)分成甲、乙兩部分,如圖,甲上有兩個不相交的區(qū)域A,B,乙被劃分為兩個不相交的區(qū)域C,D,某次測試要求隊(duì)員接到落點(diǎn)在甲上的來球后向乙回球,規(guī)定:回球一次,落點(diǎn)在C上記3分,在D上記1分,其它情況記0分.對落點(diǎn)在A上的來球,小明回球的落點(diǎn)在C上的概率為
1
2
,在D上的概率為
1
3
;對落點(diǎn)在B上的來球,小明回球的落點(diǎn)在C上的概率為
1
5
,在D上的概率為
3
5
.假設(shè)共有兩次來球且落在A,B上各一次,小明的兩次回球互不影響,求:
(Ⅰ)小明兩次回球的落點(diǎn)中恰有一次的落點(diǎn)在乙上的概率;
(Ⅱ)兩次回球結(jié)束后,小明得分之和ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex+e-x,其中e是自然對數(shù)的底數(shù).
(1)證明:f(x)是R上的偶函數(shù);
(2)若關(guān)于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;
(3)已知正數(shù)a滿足:存在x0∈[1,+∞),使得f(x0)<a(-x03+3x0)成立,試比較ea-1與ae-1的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log2
x
•log 
2
(2x)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求證:當(dāng)a、b、c為正數(shù)時,(a+b+c)(
1
a
+
1
b
+
1
c
)≥9.
(2)已知x>0,y>0,證明不等式:(x2+y2 
1
2
>(x3+y3 
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓E:x2+
y2
b2
=1(0<b<1)的左、右焦點(diǎn),過點(diǎn)F1的直線交橢圓E于A、B兩點(diǎn),若|AF1|=3|F1B|,AF2⊥x軸,則橢圓E的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
OA
=(1,-3),|
OA
|=|
OB
|,
OA
OB
=0,則|
AB
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)a,b,c滿足a+b+c=0,a2+b2+c2=1,則a的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)如下樣本數(shù)據(jù):
x345678
y4.02.5-0.50.5-2.0-3.0
得到回歸方程為
y
=bx+a,則( 。
A、a>0,b<0
B、a>0,b>0
C、a<0,b<0
D、a<0,b>0

查看答案和解析>>

同步練習(xí)冊答案