分析 (I)直線l過點(diǎn)A(-2,0),故可以設(shè)出直線l的點(diǎn)斜式方程,又由直線被圓C1截得的弦長為2$\sqrt{3}$,根據(jù)半弦長、半徑、弦心距滿足勾股定理,求出弦心距,即圓心到直線的距離,得到一個關(guān)于直線斜率k的方程,解方程求出k值,可求直線l的方程.
(II)設(shè)出過P點(diǎn)的直線l1與l2的點(diǎn)斜式方程,根據(jù)⊙C1和⊙C2的半徑相等,及直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,可得⊙C1的圓心到直線l1的距離和圓C2的圓心到直線l2的距離相等,故我們可以得到一個關(guān)于直線斜率k的方程,即可以求所有滿足條件的點(diǎn)P的坐標(biāo).
解答 解:(I)當(dāng)直線l過點(diǎn)A(-2,0),且斜率不存在時,l的方程為x=-2
由$\left\{\begin{array}{l}{(x+3)^{3}+(y-1)^{2}=4}\\{x=-2}\end{array}\right.$得y=1$±\sqrt{3}$,此時直線l被圓C1截得的弦長為2$\sqrt{3}$,滿足題意;…(2分)
當(dāng)直線l斜率存在時,設(shè)直線l的方程為y-k(x+2)
由直線l圓C1截得的弦長為2$\sqrt{3}$,可得圓心(-3,1)到直線l的距離為1
由$\frac{|-3k-1+2k|}{\sqrt{1+{k}^{2}}}$=1解得k=0.
故直線l的方程為y=0…(5分)
綜上,滿足條件的直線l有兩條,方程分別為x=-2和y=0;…(6分)
(II)設(shè)點(diǎn)P(a,b)滿足條件,不妨設(shè)直線l1的方程為y-b=k(x-a),k≠0
則直線l2方程為:y-b=-$\frac{1}{k}$(x-a)(7分)
∵⊙C1和⊙C2的半徑相等,及直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,
∴⊙C1的圓心到直線l1的距離和圓C2的圓心到直線l2的距離相等
即$\frac{|1-k(-3-a)-b|}{\sqrt{1+{k}^{2}}}$=$\frac{|5+\frac{1}{k}(4-a)-b|}{\sqrt{1+\frac{1}{{k}^{2}}}}$(8分)
整理得|1+3k+ak-b|=|5k+4-a-bk|
∴1+3k+ak-b=±(5k+4-a-bk)即(a+b-2)k=b-a+3或(a-b+8)k=a+b-5
因k的取值有無窮多個,所以$\left\{\begin{array}{l}{a+b-2=0}\\{b-a+3=0}\end{array}\right.$或$\left\{\begin{array}{l}{a-b+8=0}\\{a+b-5=0}\end{array}\right.$(10分)
解得$\left\{\begin{array}{l}{a=\frac{5}{2}}\\{b=-\frac{1}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{a=-\frac{3}{2}}\\{b=\frac{13}{2}}\end{array}\right.$,
這樣的點(diǎn)只可能是點(diǎn)P1($\frac{5}{2}$,-$\frac{1}{2}$)或點(diǎn)P2(-$\frac{3}{2}$,$\frac{13}{2}$)
經(jīng)檢驗(yàn)點(diǎn)P1和P2滿足題目條件.…(12分)
點(diǎn)評 本題是中檔題,考查點(diǎn)到直線的距離公式,直線與圓的位置關(guān)系,對稱的知識,注意方程無數(shù)解的條件,考查轉(zhuǎn)化思想,函數(shù)與方程的思想,?碱}型.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,0] | B. | [0,1] | C. | (-∞,-1) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
年齡(歲) | 頻率 | |
第1組 | [25,30) | 0.1 |
第2組 | [30,35) | 0.1 |
第3組 | [35,40) | 0.4 |
第4組 | [40,45) | 0.3 |
第5組 | [45,50] | 0.1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com