分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義進(jìn)行求解即可.
解答 解:作出不等式組對應(yīng)的平面區(qū)域,
z的幾何意義是區(qū)域內(nèi)的點(diǎn)到定點(diǎn)D(0,-1)的斜率,
由圖象知DA的斜率最大,DB的斜率最小,
由$\left\{\begin{array}{l}{2y-3=0}\\{x+2y-4=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=\frac{3}{2}}\end{array}\right.$,即A(1,$\frac{3}{2}$),
由$\left\{\begin{array}{l}{x-y-2=0}\\{x+2y-4=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=\frac{8}{3}}\\{y=\frac{2}{3}}\end{array}\right.$,即B($\frac{8}{3}$,$\frac{2}{3}$),
DA的斜率k=$\frac{\frac{3}{2}+1}{1}$=$\frac{5}{2}$,DB的斜率k=$\frac{\frac{2}{3}+1}{\frac{8}{3}}$=$\frac{5}{8}$,
則z的取值范圍是[$\frac{5}{8}$,$\frac{5}{2}$],
故答案為:[$\frac{5}{8}$,$\frac{5}{2}$]
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的有意義,利用直線斜率的幾何意義是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(sinA)<f(sinB) | B. | f(cosA)>f(cosB) | C. | f(sinA)<f(cosB) | D. | f(sinA)>f(cosB) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c<b<a | B. | b<c<a | C. | a<b<c | D. | b<a<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com