(本小題滿分12分)已知圓和定點(diǎn),由圓外一點(diǎn)向圓引切線,切點(diǎn)為,且滿足.

(1)求實(shí)數(shù)間滿足的等量關(guān)系式;
(2)求面積的最小值;
(3)求的最大值。

(1);(2);(3)

解析試題分析:(1)連結(jié),為切點(diǎn),,由勾股定理得  
,,即
化簡(jiǎn)得
(2),所以求面積的最小值轉(zhuǎn)化為求的最小值。
法一:
,當(dāng)時(shí),
所以面積的最小值為
法二:點(diǎn)在直線

即求點(diǎn)到直線的距離
所以面積的最小值為
(3)設(shè)關(guān)于直線的對(duì)稱(chēng)點(diǎn)為
,解得

的最大值為
考點(diǎn):本題考查了直線與圓的位置關(guān)系及直線的對(duì)稱(chēng)性
點(diǎn)評(píng):對(duì)稱(chēng)問(wèn)題的核心是點(diǎn)關(guān)于點(diǎn)的中心對(duì)稱(chēng)和點(diǎn)關(guān)于直線的軸對(duì)稱(chēng),要充分利用轉(zhuǎn)化的思想將問(wèn)題轉(zhuǎn)化為這兩類(lèi)對(duì)稱(chēng)中的一種加以處理

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,⊙的半徑為3,兩條弦,交于點(diǎn),且, ,
求證:△≌△

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,BA是圓O的直徑,延長(zhǎng)BA至E,使得AE=AO,過(guò)E點(diǎn)作圓O的割線交圓O于D、E,使AD=DC,

求證:;
若ED=2,求圓O的內(nèi)接四邊形ABCD的周長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,已知點(diǎn)P是⊙O外一點(diǎn),PS、PT是⊙O的兩條切線,過(guò)點(diǎn)P作⊙O
的割線PAB,交⊙O于A、B兩點(diǎn),與ST交于點(diǎn)C,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)
如圖,在中,,平分于點(diǎn),點(diǎn)上,。
(I)求證:的外接圓的切線;
(II)若,,求的長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)
如圖,AD是⊙O的直徑,AB是⊙O的切線,M, N是圓上兩點(diǎn),直線MNAD的延長(zhǎng)線于點(diǎn)C,交⊙O的切線于B,BMMNNC=1,求AB的長(zhǎng)和⊙O的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分10分)
在極坐標(biāo)系中,已知兩點(diǎn)O(0,0),B(2,).

(Ⅰ)求以OB為直徑的圓C的極坐標(biāo)方程,然后化成直角坐標(biāo)方程;
(Ⅱ)以極點(diǎn)O為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為t為參數(shù)).若直線l與圓C相交于M,N兩點(diǎn),圓C的圓心為C,求DMNC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分10分)選修4—1:幾何證明選講已知中,
垂足為D,,垂足為F,,垂足為E.

求證:(Ⅰ);
(Ⅱ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

【選做題】本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩題評(píng)分.解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A. 選修4-1:幾何證明選講
(本小題滿分10分)
如圖,與⊙相切于點(diǎn)的中點(diǎn),
過(guò)點(diǎn)引割線交⊙兩點(diǎn),
求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案