17.下列說法中正確的有( 。
①冪函數(shù)的圖象一定不過第四象限;
②已知常數(shù)a>0且a≠1,則函數(shù)f(x)=ax-1-1恒過定點(1,0);
③若存在x1,x2∈I,當x1<x2時,f(x1)<f(x2),則y=f(x)在I上是增函數(shù);
④$f(x)=\frac{1}{x}$的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞).
A.0個B.1個C.2個D.3個

分析 ①,當x>0時,xα不可能為負;
②,常數(shù)a>0且a≠1,a0=1;
③,任意x1,x2∈I,當x1<x2時,f(x1)<f(x2),則y=f(x)在I上是增函數(shù);
④,單調(diào)區(qū)間是獨立區(qū)間不能用∪.

解答 解:對于①,y=xα中,當x>0時,xα不可能為負,冪函數(shù)的圖象一定不過第四象限中,當x>0時,不可能為負,故正確;
對于②,常數(shù)a>0且a≠1,a0=1,則函數(shù)f(x)=ax-1-1恒過定點(1,0),故正確;
對于③,若任意x1,x2∈I,當x1<x2時,f(x1)<f(x2),則y=f(x)在I上是增函數(shù),故錯;
對于④,$f(x)=\frac{1}{x}$的單調(diào)減區(qū)間是(-∞,0),(0,+∞),不能用∪,是兩個獨立區(qū)間,故錯.
故選:C.

點評 本題考查了命題真假的判定,涉及到函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列說法中,正確的是(  )
A.數(shù)列{$\frac{n+1}{n}$} 的第k項為1+$\frac{1}{k}$
B.數(shù)列0,2,4,6,8…可記為{2n}
C.數(shù)列1,0,-1與數(shù)列-1,0,1是相同的數(shù)列
D.數(shù)列1,3,5,7可表示為{1,3,5,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知loga2=m,loga3=n.
(1)求a2m-n的值;
(2)用m,n表示 loga18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)計算${({lg2})^2}+lg5•lg20+{({\sqrt{2016}})^0}+{0.027^{\frac{2}{3}}}×{({\frac{1}{3}})^{-2}}$;
(2)已知$\frac{3tanα}{tanα-2}=-1$,求$\frac{7}{{{{sin}^2}α+sinα•cosα+{{cos}^2}α}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.解關(guān)于x的不等式(a2-4)x2+4x-1>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)點集M={(x,y)|xcosθ+ysinθ-sinθ-1=0(0≤θ≤2π)},集合M在坐標平面xoy內(nèi)形成區(qū)域的邊界構(gòu)成曲線C,曲線C的中心為T,圓N:(x-2-5cosθ)2+(y-5sinθ)2=1,過圓N上任一點P分別作曲線C的兩切線PE,PF,切點分別為E,F(xiàn),則$\overrightarrow{TE}•\overrightarrow{TF}$的范圍為[-$\frac{\sqrt{5}+1}{4}$,$\frac{\sqrt{5}-1}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)求經(jīng)過兩直線l1:2x-3y-3=0和l2:x+y+2=0的交點且與直線l:3x+y-1=0垂直的直線方程;
(2)若兩平行直線l1:2x+y-4=0和l2:y=-2x-k-2的距離不大于$\sqrt{5}$,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.求(1-x)3(2x2+1)5的展開式中x2項的系數(shù)13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=x2,g(x)=x+2,則f(g(3))=( 。
A.25B.11C.45D.27

查看答案和解析>>

同步練習(xí)冊答案