分析 (1)利用等差數(shù)列的通項公式即可得出.
(2)利用“裂項求和”方法即可得出.
解答 解:設(shè){an}的首項為a1,公差為d,則由a2=6,a5=12,得3d=a5-a2=6,解得d=2.
∴a1=a2-d=6-2=4,
∴an=a1+(n-1)d=4+2(n-1)=2n+2,
即數(shù)列{an}的通項公式為an=2n+2.
(Ⅱ)依題意有${b_n}=\frac{4}{{{a_n}•{a_{n+1}}}}=\frac{4}{(2n+2)•[2(n+1)+2]}=\frac{1}{(n+1)(n+2)}=\frac{1}{n+1}-\frac{1}{n+2}$,
∴${S_n}={b_1}+{b_2}+…+{b_n}=(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+…+(\frac{1}{n+1}+\frac{1}{n+2})$=$\frac{1}{2}-\frac{1}{n+2}=\frac{n}{2n+4}$.
點評 本題考查了等差數(shù)列的通項公式、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=f(x)是偶函數(shù),在$(0,\frac{π}{2})$上單調(diào)遞增 | B. | y=f(x)是奇函數(shù),在$(0,\frac{π}{4})$上單調(diào)遞增 | ||
C. | y=f(x)是偶函數(shù),在$(0,\frac{π}{2})$上單調(diào)遞減 | D. | y=f(x)是奇函數(shù),在$(0,\frac{π}{4})$上單調(diào)遞減 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x=0或$x=\frac{1}{2}$ | B. | x=-2或x=0 | C. | $x=\frac{1}{2}$ | D. | x=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | 一$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {0} | B. | {2} | C. | {0,2} | D. | {0,1,2} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com