某地一漁場的水質(zhì)受到了污染.漁場的工作人員對水質(zhì)檢測后,決定往水中投放一種藥劑來凈化水質(zhì). 已知每投放質(zhì)量為個單位的藥劑后,經(jīng)過x天該藥劑在水中釋放的濃度y(毫克/升)滿足y=mf(x),其中,當(dāng)藥劑在水中釋放的濃度不低于6(毫克/升)時稱為有效凈化;當(dāng)藥劑在水中釋放的濃度不低于6(毫克/升)且不高于18(毫克/升)時稱為最佳凈化.
(1)如果投放的藥劑質(zhì)量為m=6,試問漁場的水質(zhì)達(dá)到有效凈化一共可持續(xù)幾天?
(2)如果投放的藥劑質(zhì)量為m,為了使在8天(從投放藥劑算起包括第8天)之內(nèi)的漁場的水質(zhì)達(dá)到最佳凈化,試確定應(yīng)該投放的藥劑質(zhì)量m的取值范圍.

(1)8天;(2)

解析試題分析:(1)由已知得,經(jīng)過x天該藥劑在水中釋放的濃度 y=mf(x)是關(guān)于自變量的分段函數(shù),漁場的水質(zhì)達(dá)到有效凈化,只需,當(dāng)m=6時,,相當(dāng)于知道函數(shù)值的取值范圍,求自變量的取值范圍,即可持續(xù)的天數(shù)確定;(2)由題意知,為了使在8天(從投放藥劑算起包括第8天)之內(nèi)的漁場的水質(zhì)達(dá)到最佳凈化,只需在這8天內(nèi)的每一天均有恒成立即可,轉(zhuǎn)化為求分段函數(shù)求值域問題,使其含于即可.
(1)由題設(shè):投放的藥劑質(zhì)量為,漁場的水質(zhì)達(dá)到有效凈化 
 
,即:
所以如果投放的藥劑質(zhì)量為,自來水達(dá)到有效凈化一共可持續(xù)8天   .   6分
(2)由題設(shè):,,∵
,且,
,所以,投放的藥劑質(zhì)量m的取值范圍為
考點:分段函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

用水清洗一堆蔬菜上殘留的農(nóng)藥,對用一定量的水清洗一次的效果作如下假定:用一個單位的水可洗掉蔬菜上殘留農(nóng)藥的,用水越多洗掉的農(nóng)藥量也越多,但總還有農(nóng)藥殘留在蔬菜上.設(shè)用單位量的水清洗一次以后,蔬菜上殘留的農(nóng)藥量與本次清洗前殘留的農(nóng)藥量之比為函數(shù)
⑴試規(guī)定的值,并解釋其實際意義;
⑵試根據(jù)假定寫出函數(shù)應(yīng)滿足的條件和具有的性質(zhì);
⑶設(shè),現(xiàn)有單位量的水,可以清洗一次,也可以把水平均分成兩份后清洗兩次.試問用那種方案清洗后蔬菜上殘留的農(nóng)藥量比較少?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=2x,g(x)=+2.
(1)求函數(shù)g(x)的值域;
(2)求滿足方程f(x)-g(x)=0的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2個小題滿分8分。
某加油站擬造如圖所示的鐵皮儲油罐(不計厚度,長度單位:米),其中儲油罐的中間為圓柱形,左右兩端均為半球形,為圓柱的高,為球的半徑,).假設(shè)該儲油罐的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為千元,半球形部分每平方米建造費用為3千元.設(shè)該儲油罐的建造費用為千元.
(1)寫出關(guān)于的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
(2)求該儲油罐的建造費用最小時的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=lnx+a,其中a為大于零的常數(shù).
(1)若函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)單調(diào)遞增,求實數(shù)a的取值范圍.
(2)求證:對于任意的n∈N*,且n>1時,都有l(wèi)nn>++…+恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2014·鄭州模擬)已知函數(shù)f(x)=ex+ax,g(x)=ax-lnx,其中a≤0.
(1)求f(x)的極值.
(2)若存在區(qū)間M,使f(x)和g(x)在區(qū)間M上具有相同的單調(diào)性,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了綠化城市,準(zhǔn)備在如圖所示的區(qū)域DFEBC內(nèi)修建一個矩形PQRC的草坪,且PQ∥BC,RQ⊥BC,另外△AEF的內(nèi)部有一文物保護(hù)區(qū)不能占用,經(jīng)測量AB=100m,BC=80m,AE=30m,AF=20m。應(yīng)如何設(shè)計才能使草坪的占地面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知不等式x2-logax<0,當(dāng)x∈(0,)時恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)a>0且a≠1,函數(shù)y=a2x+2ax-1在[-1,1]上的最大值是14,求a的值.

查看答案和解析>>

同步練習(xí)冊答案