【題目】如圖,在棱長為a的正方體ABCD﹣A1B1C1D1中,P為A1D1的中點,Q為A1B1上任意一點,E、F為CD上任意兩點,且EF的長為定值,則下面的四個值中不為定值的是( )
A.點P到平面QEF的距離
B.直線PQ與平面PEF所成的角
C.三棱錐P﹣QEF的體積
D.二面角P﹣EF﹣Q的大小
【答案】B
【解析】
A選項:根據(jù)和平面都是固定的,得到到平面的距離也是固定的.
B選項:因為是動點,也是動點,得到直線與平面所成的角不是定值.
C選項:因為的面積是定值,高也是定值,得到三棱錐體積也是定值.
D選項:因為,為上任意一點,、為上任意兩點,所以二面角的大小為定值.
A選項:因為平面也是平面,既然和平面都是固定的,所以到平面的距離也是固定的,故A為定值.
B選項:因為是動點,也是動點,推不出定值結論,所以B不是定值.
C選項:因長為定值,所以的面積是定值,再根據(jù)選項A知:到平面的距離也是定值,所以C是定值.
D選項:因為,為上任意一點,、為上任意兩點,所以二面角的大小為定值,所以D是定值.
故選:B
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,橢圓:的上頂點為,左、右焦點分別為,,直線的斜率為,點,在橢圓上,其中是橢圓上一動點,點坐標為.
(1)求橢圓的標準方程;
(2)作直線與軸垂直,交橢圓于,兩點(,兩點均不與點重合),直線,與軸分別交于點,,試求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法:①若線性回歸方程為,則當變量增加一個單位時,一定增加3個單位;②將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,方差不會改變;③線性回歸直線方程必過點;④抽簽法屬于簡單隨機抽樣;其中錯誤的說法是( )
A.①③B.②③④C.①D.①②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知極坐標系的極點在平面直角坐標系的原點處,極軸與軸的正半軸重合,且長度單位相同;曲線 的方程是,直線的參數(shù)方程為(為參數(shù),),設, 直線與曲線交于 兩點.
(1)當時,求的長度;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線2x﹣y﹣1=0與直線x﹣2y+1=0交于點P.
(1)求過點P且垂直于直線3x+4y﹣15=0的直線l1的方程;(結果寫成直線方程的一般式)
(2)求過點P并且在兩坐標軸上截距相等的直線l2方程(結果寫成直線方程的一般式)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若存在一個實數(shù),使得成立,則稱為函數(shù)的一個不動點,設函數(shù)(, 為自然對數(shù)的底數(shù)),定義在上的連續(xù)函數(shù)滿足,且當時, .若存在,且為函數(shù)的一個不動點,則實數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年4月,甲乙兩校的學生參加了某考試機構舉行的大聯(lián)考,現(xiàn)從這兩校參加考試的學生數(shù)學成績在100分及以上的試卷中用系統(tǒng)抽樣的方法各抽取了20份試卷,并將這40份試卷的得分制作成如下的莖葉圖.
(1)試通過莖葉圖比較這40份試卷的兩校學生數(shù)學成績的中位數(shù);
(2)若把數(shù)學成績不低于135分的記作數(shù)學成績優(yōu)秀,根據(jù)莖葉圖中的數(shù)據(jù),判斷是否有90的把握認為數(shù)學成績在100分及以上的學生中數(shù)學成績是否優(yōu)秀與所在學校有關;
(3)若從這40名學生中選取數(shù)學成績在的學生,用分層抽樣的方式從甲乙兩校中抽取5人,再從這5人中隨機抽取3人分析其失分原因,求這3人中恰有2人是乙校學生的概率.
參考公式與臨界值表:,其中.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.
(1)求橢圓的方程;
(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com