【題目】某校準備組織師生共60人,從南靖乘動車前往廈門參加夏令營活動,動車票價格如表所示:(教師按成人票價購買,學生按學生票價購買).

運行區(qū)間

成人票價(元/張)

學生票價(元/張)

出發(fā)站

終點站

一等座

二等座

二等座

南靖

廈門

26

22

16

若師生均購買二等座票,則共需1020元.
(1)參加活動的教師有人,學生有人;
(2)由于部分教師需提早前往做準備工作,這部分教師均購買一等座票,而后續(xù)前往的教師和學生均購買二等座票.設(shè)提早前往的教師有x人,購買一、二等座票全部費用為y元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②若購買一、二等座票全部費用不多于1032元,則提早前往的教師最多只能多少人?

【答案】
(1)10;50
(2)

解:①依題意有:y=26x+22(10﹣x)+16×50=4x+1020.

故y關(guān)于x的函數(shù)關(guān)系式是y=4x+1020;

②依題意有

4x+1020≤1032,

解得x≤3.

故提早前往的教師最多只能3人.


【解析】(1)解:設(shè)參加活動的教師有a人,學生有b人,依題意有

解得
故參加活動的教師有10人,學生有50人;
本題主要考查對一次函數(shù),二元一次方程組,一元一次不等式等知識點的理解和掌握,此題是一個拔高的題目,有一定的難度.
(1)設(shè)參加活動的教師有a人,學生有b人,根據(jù)等量關(guān)系:師生共60人;若師生均購買二等座票,則共需1020元;列出方程組,求出方程組的解即可;(2)①根據(jù)購買一、二等座票全部費用=購買一等座票錢數(shù)+教師購買二等座票錢數(shù)+學生購買二等座票錢數(shù),依此可得解析式;②根據(jù)不等關(guān)系:購買一、二等座票全部費用不多于1032元,列出方程求解即可.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知的角所對的邊分別是,設(shè)向量,,

1)若,求證:為等腰三角形

2)若,邊長C =,求的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年春節(jié),“搶紅包”成為社會熱議的話題之一.某機構(gòu)對春節(jié)期間用戶利用手機“搶紅包”的情況進行調(diào)查,如果一天內(nèi)搶紅包的總次數(shù)超過10次為“關(guān)注點高”,否則為“關(guān)注點低”,調(diào)查情況如下表所示:

(1)填寫上表中x,y的值并判斷是否有95%以上的把握認為性別與關(guān)注點高低有關(guān)?

(2)現(xiàn)要從上述男性用戶中隨機選出3名參加一項活動,以X表示選中的同學中搶紅包總次數(shù)超過10次的人數(shù),求隨機變量X的分布列及數(shù)學期望E(X).

下面的臨界值表供參考:

獨立性檢驗統(tǒng)計量,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】把不等式組 的解集表示在數(shù)軸上,正確的是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形為直角梯形, ,若是以為底邊的等腰直角三角形,且.

(1)證明: 平面;

(2)求直線與平面所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為的正方形,側(cè)面

底面,且, 分別為、的中點.

1)求證: 平面;

2)求證:面平面

3)在線段上是否存在點,使得二面角的余弦值為?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 是邊長為的菱形, , 平面, 平面, .

(Ⅰ)求證: ;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對某校高一年級學生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取名學生作為樣本,得到這名學生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

10

0.25

25

2

0.05

合計

1

(1)求出表中及圖中的值;

(2)試估計他們參加社區(qū)服務(wù)的平均次數(shù);

(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學生中任選2人,求至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,F(xiàn)為弦AC的中點,連接OF并延長交 于點D,過點D作⊙O的切線,交BA的延長線于點E.

(1)求證:AC∥DE;
(2)連接CD,若OA=AE=a,寫出求四邊形ACDE面積的思路.

查看答案和解析>>

同步練習冊答案