【題目】已知等比數(shù)列的公比,且,是、的等差中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)試比較與的大小,并說明理由;
(3)若數(shù)列滿足,在每兩個與之間都插入個2,使得數(shù)列變成了一個新的數(shù)列,試問:是否存在正整數(shù),使得數(shù)列的前項(xiàng)和?如果存在,求出的值;如果不存在,說明理由.
【答案】(1)(2),詳見解析(3)存在,使得
【解析】
(1)根據(jù)條件列出方程組,解基本量即可.(2)由(1)可知通項(xiàng)為:,對通項(xiàng)裂項(xiàng)可得:,從而可求出前n項(xiàng)和,即可比較出大小關(guān)系.(3)由(2)可知:數(shù)列中含有 含有個2,所以數(shù)列中,的前所有項(xiàng)之和為,求出S,代入k的具體值,可知當(dāng)時,,當(dāng)時,,所以在的基礎(chǔ)之上加上471個2可得,把前面所有項(xiàng)的個數(shù)加起來即可得到m的值.
解:(1)由是,的等差中項(xiàng),得,
∴,解得.
∴,從而,
∵,∴解得.
∴,從而.
(2)由(1)知.
∴
(3).
根據(jù)題意,數(shù)列中,(含項(xiàng))前的所有項(xiàng)的和為:
.
當(dāng)時,,
當(dāng)時,,
又∵,
∴時,,
∴存在,使得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了鼓勵職員工作熱情,某公司對每位職員一年來的工作業(yè)績按月進(jìn)行考評打分;年終按照職員的月平均值評選公司最佳職員并給予相應(yīng)獎勵.已知職員一年來的工作業(yè)績分?jǐn)?shù)的莖葉圖如圖所示:
(1)根據(jù)職員的業(yè)績莖葉圖求出他這一年的工作業(yè)績的中位數(shù)和平均數(shù);
(2)若記職員的工作業(yè)績的月平均數(shù)為.
①已知該公司還有6位職員的業(yè)績在100以上,分別是,,,,,,在這6人的業(yè)績里隨機(jī)抽取2個數(shù)據(jù),求恰有1個數(shù)據(jù)滿足(其中)的概率;
②由于職員的業(yè)績高,被公司評為年度最佳職員,在公司年會上通過抽獎形式領(lǐng)取獎金.公司準(zhǔn)備了9張卡片,其中有1張卡片上標(biāo)注獎金為6千元,4張卡片的獎金為4千元,另外4張的獎金為2千元.規(guī)則是:獲獎職員需要從9張卡片中隨機(jī)抽出3張,這3張卡片上的金額數(shù)之和就是該職員所得獎金.記職員獲得的獎金為(千元),求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①;②;③ 這三個條件中任選一個,補(bǔ)充在下面問題中的橫線上,并解答相應(yīng)的問題.
在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足________________,,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列滿足.
①存在可以生成的數(shù)列是常數(shù)數(shù)列;
②“數(shù)列中存在某一項(xiàng)”是“數(shù)列為有窮數(shù)列”的充要條件;
③若為單調(diào)遞增數(shù)列,則的取值范圍是;
④只要,其中,則一定存在;
其中正確命題的序號為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已過拋物線:的焦點(diǎn)作直線交拋物線于,兩點(diǎn),以,兩點(diǎn)為切點(diǎn)作拋物線的切線,兩條直線交于點(diǎn).
(1)當(dāng)直線平行于軸時,求點(diǎn)的坐標(biāo);
(2)當(dāng)時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為橢圓的右焦點(diǎn),且橢圓長軸的長為4,、是橢圓上的兩點(diǎn);
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)若直線經(jīng)過點(diǎn),且,求直線的方程;
(3)若動點(diǎn)滿足:,直線與的斜率之積為,是否存在兩個定點(diǎn)、,使得為定值?若存在,求出、的坐標(biāo);若不存在,請說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是公差的等差數(shù)列,且.
(1)求的前項(xiàng)的和;
(2)若,問在數(shù)列中是否存在一項(xiàng)(是正整數(shù)),使得成等比數(shù)列,若存在,求出的值,若不存在,請說明理由;
(3)若存在自然數(shù)(是正整數(shù)),滿足,使得成等比數(shù)列,求所有整數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com