若直線l1:x+ay-1=0與l2:4x-2y+3=0垂直,則二項(xiàng)式(ax2-
1
x
)2
展開式中的x的系數(shù)為
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:根據(jù)兩條直線垂直的性質(zhì)可得a的值,在二項(xiàng)展開式的通項(xiàng)公式中,令x的冪指數(shù)等于1,求出r的值,即可求得展開式中的x的系數(shù).
解答: 解:∵直線l1:x+ay-1=0與l2:4x-2y+3=0垂直,∴1×4-2a=0,解得a=2.
則二項(xiàng)式(ax2-
1
x
)2
=(2x2-
1
x
)
2
的展開式中的通項(xiàng)公式為Tr+1=
C
r
2
•22-r•(-1)r•x4-3r,
令4-3r=1,求得r=1故,展開式中x的系數(shù)為-2×2=-4,
故答案為:-4.
點(diǎn)評(píng):本題主要考查兩條直線垂直的性質(zhì),二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,且經(jīng)過點(diǎn)A(0,-1).
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(diǎn)(0,
3
5
)的直線與橢圓交于M,N兩點(diǎn)(M,N點(diǎn)與A點(diǎn)不重合),求證:以MN為直徑的圓恒過A點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
1
2
,右焦點(diǎn)為F,右頂點(diǎn)A在圓F:(x-1)2+y22(γ>0)上.
(Ⅰ)求橢圓C和圓F的方程;
(Ⅱ)已知過點(diǎn)A的直線l與橢圓C交于另一點(diǎn)B,與圓F交于另一點(diǎn)P.請(qǐng)判斷是否存在斜率不為0的直線l,使點(diǎn)P恰好為線段AB的中點(diǎn),若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長方形區(qū)域{(x,y)|0≤x≤2,0≤y≤1}中任取一點(diǎn)P,則點(diǎn)P恰好取自曲線y=cosx(0≤x≤
π
2
)
與坐標(biāo)軸圍成的區(qū)域內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2-bx+2(x∈(-∞,1))是單調(diào)函數(shù),則b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列結(jié)論:
①與圓x2+y2=1及圓x2+y2-8x+12=0都外切的圓的圓心在一個(gè)橢圓上.
②若直線y=kx-1與雙曲線x2-y2=4右支有兩個(gè)公共點(diǎn),則k∈(1,
5
2
)

③經(jīng)過橢圓
x2
2
+y2=1
的右焦點(diǎn)F作傾斜角為600的直線l交橢圓于A,B兩點(diǎn),且|AF|>|BF|,則
AF
=
9+3
2
7
FB

④拋物線y2=2x上的點(diǎn)P到直線y=x+4的距離的最小值為
7
2
4

其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y滿足不等式組
x+y≥2
x-y≤2
0≤y≤3
,則z=x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法錯(cuò)誤的是( 。
A、命題:“已知f(x)是R上的增函數(shù),若a+b≥0,則f(a)+f(b)≥f(-a)+f(-b)”的逆否命題為真命題
B、命題p:“存在x∈R,使得x2+x+1<0”,則?p:“任意x∈R,均有x2+x+1≥0”
C、若p且q為假命題,則p、q均為假命題
D、“x>1”是“|x|>1”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1(-
3
,0)、F2
3
,0),
橢圓上的點(diǎn)P滿足∠PF1F2=90°,且△PF1F2的面積S△PF1F2=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在直線l,使l與橢圓C交于不同的兩點(diǎn)M、N,且線段MN恰被直線x=-1平分?若存在,求出l的斜率取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案