已知拋物線C:x2=2py(p>0)的焦點為F,且
OG
=4
OF
,其中O是坐標原點,以G為圓心且與拋物線C有且只有兩個交點的圓的方程為( 。
A、x2+(y-2p)2=3p2
B、(x-2p)2+y2=3p2
C、x2+(y-2p)2=p2
D、(x-2p)2+y2=p2
考點:拋物線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:先求出G的坐標,再設以G為圓心的圓的方程為x2+(y-2p)2=r2,將x2=2py代入,整理,根據(jù)以G為圓心且與拋物線C有且只有兩個交點,可得△=4p2-4(4p2-r2)=0,由此可求圓的半徑,即可得到結論.
解答: 解:∵拋物線C:x2=2py(p>0)的焦點為F,且
OG
=4
OF
,
∴G(0,2p),
設以G為圓心的圓的方程為x2+(y-2p)2=r2,
將x2=2py代入,整理可得y2-2py+4p2-r2=0
∵以G為圓心且與拋物線C有且只有兩個交點,
∴△=4p2-4(4p2-r2)=0,
∴r2=3p2,
∴以G為圓心的圓的方程為x2+(y-2p)2=3p2
故選:A.
點評:本題考查圓的方程,考查圓與拋物線的位置關系,考查向量知識的運用,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

用一個邊長為4的正三角形硬紙,沿各邊中點連線垂直折起三個小三角形,做成一個蛋托,半徑為1的雞蛋(視為球體)放在其上(如圖),則雞蛋中心(球心)與蛋托底面的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓錐底面圓的周長為4π,側棱與底面所成角的大小為arctan2,則該圓錐的體積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正四面體ABCD,線段AB∥平面α,E,F(xiàn)分別是線段AD和BC的中點,當正四面體繞以AB為軸旋轉時,則線段AB與EF在平面α上的射影所成角余弦值的范圍是(  )
A、[0,
2
2
]
B、[
2
2
,1]
C、[
1
2
,1]
D、[
1
2
,
2
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α為第二象限角,且sinα=
4
5
,則tanα的值為(  )
A、-
3
4
B、-
4
3
C、
3
4
D、
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在空間中有一棱長為a的正四面體,其俯視圖的面積的最大值為( 。
A、a2
B、
a2
2
C、
3
a2
4
D、
a2
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將函數(shù)h(x)=2sin(2x+
π
4
)的圖象向右平移
π
4
個單位,再向上平移2個單位,得到函數(shù)f(x)的圖象,則函數(shù)f(x)的圖象與函數(shù)h(x)的圖象(  )
A、關于直線x=0對稱
B、關于直線x=1對稱
C、關于點(1,0)對稱
D、關于點(0,1)對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C1的參數(shù)方程是
x=cosθ
y=2sinθ
(θ為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程是ρ=-2cosθ.
(Ⅰ)寫出C1的極坐標方程和C2的直角坐標方程;
(Ⅱ)已知點M1、M2的極坐標分別是(1,π)、(2,
π
2
),直線M1M2與曲線C2相交于P、Q兩點,射線OP與曲線C1相交于點A,射線OQ與曲線C1相交于點B,求
1
丨OA2
+
1
丨OB2
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為2,離心率為
2
2

(1)求橢圓C的方程;
(2)若過點M(2,0)的引斜率為k的直線與橢圓C相交于兩點G、H,設P為橢圓C上一點,且滿足
OG
+
OH
=t
OP
(O為坐標原點),當|
PG
-
PH
|<
2
5
3
時,求實數(shù)t的取值范圍?

查看答案和解析>>

同步練習冊答案