精英家教網 > 高中數學 > 題目詳情
已知f(x)=
1
x
-1,x≥1
lnx,0<x<1
,若f(x)≤k(x-1)恒成立,則k的取值范圍是( 。
A、(1,+∞)
B、(-∞,0]
C、(0,1)
D、[0,1]
考點:分段函數的應用
專題:函數的性質及應用
分析:先作出函數f(x)的圖象,將直線y=k(x-1)從x軸開始按逆時鐘方向繞點(1,0)旋轉,至與函數y=lnx(x>0)的圖象相切時,能保證f(x)≤k(x-1)成立,從而獲得k的取值范圍.
解答:解:由f(x)的解析式畫出其圖象,如右圖所示,
設曲線y=lnx(x>0)在點(1,0)處的切線的斜率為k0
由直線y=k(x-1)的位置變化知,若f(x)≤k(x-1)恒成立,則0≤k≤k0,
又由y′=(lnx)′=
1
x
,得k0=1,
所以0≤k≤1.
故選D.
點評:1.本題考查了分段函數的應用,利用圖象關系進行處理,體現了數形結合思想的運用.
2.對于分段函數問題,關鍵是掌握分界點處的情況.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=x2+ax+b(a,b∈R)的值域為[0,+∞),若關于x的不等式f(x)<c的解集為(x1,x2)且|x1-x2|=4,則實數c的值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數學 來源: 題型:

e,π分別是自然對數的底數和圓周率,則下列不等式中不成立的是( 。
A、
e
3π
B、logπ
e
+loge
π
>1
C、logπe+(logeπ)2>2
D、ee-e>eπ

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)滿足:①定義域為R;②對任意x∈R,有f(x+2)=2f(x);③當x∈[-1,1]時,f(x)=
1-x2
.若函數g(x)=
ex(x≤0)
lnx(x>0)
,則函數y=f(x)-g(x)在區(qū)間[-5,5]上零點的個數是( 。
A、7B、8C、9D、10

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
1
x+1
-3,  x∈(-1,0]
x,            x∈(0,1]
,且g(x)=f(x)-mx-m在(-1,1]內有且僅有兩個不同的零點,則實數m的取值范圍是( 。
A、(-
9
4
,-2]∪(0,
1
2
]
B、(-
11
4
,-2]∪(0,
1
2
]
C、(-
9
4
,-2]∪(0,
2
3
]
D、(-
11
4
,-2]∪(0,
2
3
]

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
2x-1≤1,x≤1
x+3
x-1
,x>1
若函數y=g(x)的圖象與函數y=f-1(x-1)的圖象關于直線y=x對稱,則g(11)的值是( 。
A、
13
9
B、
12
5
C、
13
5
D、
15
11

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=
log2(-x),x<0
f(x-5),x≥0
,則f(2014)=( 。
A、-1B、2C、0D、1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
log
1
3
x (x>0)
3x (x≤0)
那么不等式f(x)≥1的解集為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

下列說法錯誤的是(  )
A、平面α與平面β相交,它們只有有限個公共點B、經過一條直線和這條直線外的一點,有且只有一個平面C、經過兩條相交直線,有且只有一個平面D、如果兩個平面有三個不共線的公共點,那么這兩個平面重合

查看答案和解析>>

同步練習冊答案