【題目】在棱長為的透明密閉的正方形容器
中,裝有容器總體積一半的水(不計(jì)容器壁的厚度),將該正方體容器繞
旋轉(zhuǎn),并始終保持
所在直線與水平平面平行,則在旋轉(zhuǎn)過程中容器中水的水面面積的最大值為__________.
【答案】
【解析】
設(shè)點(diǎn)在
上,點(diǎn)
在
上,滿足
,則原問題等價(jià)于求解四邊形
的最大值.建立空間直角坐標(biāo)系,結(jié)合二次函數(shù)的性質(zhì)可得旋轉(zhuǎn)過程中容器中水的水面面積的最大值.
如圖所示,在棱長為的正方體
中,
點(diǎn)在
上,點(diǎn)
在
上,滿足
,
則原問題等價(jià)于求解四邊形的最大值.
作于點(diǎn)
,當(dāng)
最大時(shí),四邊形
有最大值.
建立如圖所示的空間直角坐標(biāo)系,
設(shè),設(shè)
,
由于,由
可得:
,則:
,故
,
故:,
由可得:
.
故:
,
結(jié)合二次函數(shù)的性質(zhì)可知:當(dāng)或
時(shí),
取得最大值,此時(shí)
取得最大值,最大值為:
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機(jī)詢問50名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動,得到如下的列聯(lián)表,由得
參照附表,得到的正確結(jié)論是
A. 有99.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”
B. 有99.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”
C. 在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”
D. 在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在ABC中,角A,B,C所對的邊分別為a,b,c,且asinAcosC+csinAcosA=
c.
(1)若c=1,sinC=,求
ABC的面積S;
(2)若D是AC的中點(diǎn),且cosB=,BD=
,求
ABC的三邊長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為
、
,過
的直線
交橢圓
、
兩點(diǎn),若
的最大值為5,則b的值為( )
A. 1 B. C.
D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點(diǎn)到定直線
:
的距離比到定點(diǎn)
的距離大2.
(1)求動點(diǎn)的軌跡
的方程;
(2)在軸正半軸上,是否存在某個(gè)確定的點(diǎn)
,過該點(diǎn)的動直線
與曲線
交于
,
兩點(diǎn),使得
為定值.如果存在,求出點(diǎn)
坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,、
是離心率為
的橢圓
:
的左、右焦點(diǎn),過
作
軸的垂線交橢圓
所得弦長為
,設(shè)
、
是橢圓
上的兩個(gè)動點(diǎn),線段
的中垂線與橢圓
交于
、
兩點(diǎn),線段
的中點(diǎn)
的橫坐標(biāo)為1.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓(
)的左、右焦點(diǎn)為
,右頂點(diǎn)為
,上頂點(diǎn)為
.已知
.
(1)求橢圓的離心率;
(2)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段
為直徑的圓經(jīng)過點(diǎn)
,經(jīng)過原點(diǎn)
的直線
與該圓相切,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的離心率為
,橢圓
:
經(jīng)過點(diǎn)
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)是橢圓
上的任意一點(diǎn),射線
與橢圓
交于點(diǎn)
,過點(diǎn)
的直線
與橢圓
有且只有一個(gè)公共點(diǎn),直線
與橢圓
交于
,
兩個(gè)相異點(diǎn),證明:
面積為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com