【題目】某學(xué)校為準(zhǔn)備參加市運(yùn)動會,對本校甲、乙兩個田徑隊(duì)中名跳高運(yùn)動員進(jìn)行了測試,并用莖葉圖表示出本次測試人的跳高成績(單位:).跳高成績在以上(包括)定義為“合格”,成績在以下(不包括)定義為“不合格”.鑒于乙隊(duì)組隊(duì)晚,跳高成績相對較弱,為激勵乙隊(duì)隊(duì)隊(duì),學(xué)校決定只有乙隊(duì)中“合格”者才能參加市運(yùn)動會開幕式旗林隊(duì).
(1)求甲隊(duì)隊(duì)員跳高成績的中位數(shù);
(2)如果用分層抽樣的方法從甲、乙兩隊(duì)所有的運(yùn)動員中共抽取人,則人中“合格”與“不合格”的人數(shù)各為多少;
(3)若從所有“合格”運(yùn)動員中選取名,用表示所選運(yùn)動員中能參加市運(yùn)動會開幕式旗林隊(duì)的人數(shù),試求的概率.
【答案】(1);(2)“合格”有人,“不合格”有人;(3).
【解析】
(1)將數(shù)據(jù)從小到大排列,找到中間的兩個數(shù),再求平均數(shù)即得中位數(shù);
(2)根據(jù)莖葉圖,有“合格”人,“不合格”人,求出每個運(yùn)動員被抽中的概率,然后根據(jù)分層抽樣可求得結(jié)果;
(3)根據(jù)莖葉圖,確定甲隊(duì)和乙隊(duì)“合格”的人數(shù),利用古典概型的概率公式可求出的概率.
(1)甲隊(duì)隊(duì)員跳高的成績由小到大依次為、、、、、、、、、、、(單位:),中位數(shù)為;
(2)根據(jù)莖葉圖,有“合格”人,“不合格”人,用分層抽樣的方法,每個運(yùn)動員被抽中的概率是,
所以選中的“合格”有人,“不合格”有人;
(3)由題意得,乙隊(duì)“合格”有人,分別記為、、、,甲隊(duì)“合格”有人,分別記為、、、、、、、,
從這人中任意挑選人,所有的基本事件有:、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、,共種,
其中,事件包含的基本事件有:、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、,共個,因此,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率為,左焦點(diǎn)到直線的距離為10,圓.
(1)求橢圓的方程;
(2)若是橢圓上任意一點(diǎn),為圓的任一直徑,求的取值范圍;
(3)是否存在以橢圓上點(diǎn)為圓心的圓,使得過圓上任意一點(diǎn)作圓的切線,切點(diǎn)為,都滿足?若存在,求出圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“勾股定理”在西方被稱為“畢達(dá)哥拉斯定理”,國時(shí)期吳國的數(shù)學(xué)家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個大正方形若直角三角形中較小的銳角,現(xiàn)在向該大止方形區(qū)域內(nèi)隨機(jī)地投擲一枚飛鏢,則飛鏢落在陰影部分的概率是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),對于函數(shù)有下述四個結(jié)論:
①函數(shù)在其定義域上為增函數(shù);
②對于任意的,都有成立;
③有且僅有兩個零點(diǎn);
④若在點(diǎn)處的切線也是的切線,則必是零點(diǎn).
其中所有正確的結(jié)論序號是( )
A.①②③B.①②C.②③④D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,過點(diǎn)且與軸垂直的直線被橢圓截得的線段長為,且與短軸兩端點(diǎn)的連線相互垂直.
(1)求橢圓的方程;
(2)若圓上存在兩點(diǎn),,橢圓上存在兩個點(diǎn)滿足:三點(diǎn)共線,三點(diǎn)共線,且,求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】培養(yǎng)某種水生植物需要定期向培養(yǎng)植物的水中加入物質(zhì),已知向水中每投放1個單位的物質(zhì),(單位:天)時(shí)刻后水中含有物質(zhì)的量增加,與的函數(shù)關(guān)系可近似地表示為關(guān)系可近似地表示為.根據(jù)經(jīng)驗(yàn),當(dāng)水中含有物質(zhì)的量不低時(shí),物質(zhì)才能有效發(fā)揮作用.
(1)若在水中首次投放1個單位的物質(zhì),計(jì)算物質(zhì)能持續(xù)有效發(fā)揮作用幾天?
(2)若在水中首次投放1個單位的物質(zhì),第8天再投放1個單位的物質(zhì),試判斷第8天至第12天,水中所含物質(zhì)的量是否始終不超過,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車又稱為小黃車,近年來逐漸走進(jìn)了人們的生活,也成為減少空氣污染,緩解城市交通壓力的一種重要手段.為調(diào)查某地區(qū)居民對共享單車的使用情況,從該地區(qū)居民中按年齡用隨機(jī)抽樣的方式隨機(jī)抽取了人進(jìn)行問卷調(diào)查,得到這人對共享單車的評價(jià)得分統(tǒng)計(jì)填入莖葉圖,如下所示(滿分分):
(1)找出居民問卷得分的眾數(shù)和中位數(shù);
(2)請計(jì)算這位居民問卷的平均得分;
(3)若在成績?yōu)?/span>分的居民中隨機(jī)抽取人,求恰有人成績超過分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公園計(jì)劃在矩形空地上建造一個扇形花園如圖①所示,矩形的邊與邊的長分別為48米與40米,扇形的圓心為中點(diǎn),扇形的圓弧端點(diǎn),分別在與上,圓弧的中點(diǎn)在上.
(1)求扇形花園的面積(精確到1平方米);
(2)若在扇形花園內(nèi)開辟出一個矩形區(qū)域為花卉展覽區(qū).如圖②所示,矩形的四條邊與矩形的對應(yīng)邊平行,點(diǎn),分別在,上,點(diǎn),在扇形的弧上.某同學(xué)猜想:當(dāng)矩形面積最大時(shí),兩矩形與的形狀恰好相同(即長與寬之比相同),試求花卉展覽區(qū)面積的最大值,并判斷上述猜想是否正確(請說明理由).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線,直線交拋物線于,兩點(diǎn),是拋物線外一點(diǎn),連接,分別交拋物線于點(diǎn),,且.
(Ⅰ)若,求點(diǎn)的軌跡方程;
(Ⅱ)若,求面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com