【題目】有7個(gè)球,其中紅色球2個(gè)(同色不加區(qū)分),白色,黃色,藍(lán)色,紫色,灰色球各1個(gè),將它們排成一行,要求最左邊不排白色,2個(gè)紅色排一起,黃色和紅色不相鄰,則有________種不同的排法(用數(shù)字回答).
【答案】408
【解析】
先不考慮白色球的限制條件,將白色,藍(lán)色,紫色,灰色球排列起來(lái),然后將兩個(gè)紅色球捆綁成一個(gè)整體與黃球插入前4個(gè)顏色的球制造出的5個(gè)空隙中,利用分步計(jì)數(shù)乘法原理可得所有的排法,再減去最左邊排白色球的排法,即可得解.
不考慮白色球排列限制,先不排黃色球和紅色球,其他球任意排列共有種排法,再將2個(gè)紅色球(排一起)和黃色球插入5個(gè)空隙中,有種排法,即此時(shí)排法共有種,而最左邊排白色球的排法共有種,故符合條件的排法共有種.
故答案為:408.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,點(diǎn)E,F分別為棱BC,CC1的中點(diǎn),過(guò)點(diǎn)A,E,F作平面截正方體的表面所得圖形是( )
A.三角形B.平行四邊形C.等腰梯形D.平面五邊形
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市實(shí)驗(yàn)中學(xué)數(shù)學(xué)教研組,在高三理科一班進(jìn)行了一次“采用兩種不同方式進(jìn)行答卷”的考試實(shí)驗(yàn),第一種做卷方式:按從前往后的順序依次做;第二種做卷方式:先做簡(jiǎn)單題,再做難題.為了比較這兩種做卷方式的效率,選取了名學(xué)生,將他們隨機(jī)分成兩組,每組人.第一組學(xué)生用第一種方式,第二組學(xué)生用第二種方式,根據(jù)學(xué)生的考試分?jǐn)?shù)(單位:分)繪制了莖葉圖如圖所示.
若分(含分)以上為優(yōu)秀,根據(jù)莖葉圖估計(jì)兩種做卷方式的優(yōu)秀率;
設(shè)名學(xué)生考試分?jǐn)?shù)的中位數(shù)為,根據(jù)莖葉圖填寫(xiě)下面的列聯(lián)表:
超過(guò)中位數(shù)的人數(shù) | 不超過(guò)中位數(shù)的人數(shù) | 合計(jì) | |
第一種做卷方式 | |||
第一種做卷方式 | |||
合計(jì) |
根據(jù)列聯(lián)表,能否有的把握認(rèn)為兩種做卷方式的效率有差異?
附:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓錐PO中,AB是圓O的直徑,且AB=4,C是底面圓O上一點(diǎn),且AC=2,點(diǎn)D為半徑OB的中點(diǎn),連接PD.
(1)求證:PC在平面APB內(nèi)的射影是PD;
(2)若PA=4,求底面圓心O到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)響應(yīng)“綠水青山就是金山銀山”的號(hào)召,因地制宜的將該鎮(zhèn)打造成“生態(tài)水果特色小鎮(zhèn)”.經(jīng)調(diào)研發(fā)現(xiàn):某珍稀水果樹(shù)的單株產(chǎn)量(單位:千克)與施用肥料(單位:千克)滿(mǎn)足如下關(guān)系:,肥料成本投入為元,其它成本投入(如培育管理、施肥等人工費(fèi))元.已知這種水果的市場(chǎng)售價(jià)大約為15元/千克,且銷(xiāo)路暢通供不應(yīng)求.記該水果樹(shù)的單株利潤(rùn)為(單位:元).
(Ⅰ)求的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)施用肥料為多少千克時(shí),該水果樹(shù)的單株利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記數(shù)列的前n項(xiàng)和為,已知,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),記數(shù)列的前n項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),對(duì)于函數(shù)有下述四個(gè)結(jié)論:
①函數(shù)在其定義域上為增函數(shù);
②對(duì)于任意的,都有成立;
③有且僅有兩個(gè)零點(diǎn);
④若在點(diǎn)處的切線(xiàn)也是的切線(xiàn),則必是零點(diǎn).
其中所有正確的結(jié)論序號(hào)是( )
A.①②③B.①②C.②③④D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)y=a分別與直線(xiàn),曲線(xiàn)交于點(diǎn)A,B,則線(xiàn)段AB長(zhǎng)度的最小值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的部分圖象如圖所示,又函數(shù).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)設(shè)的內(nèi)角、、的對(duì)邊分別為、、,又,且銳角滿(mǎn)足,若,為邊的中點(diǎn),求的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com